PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1672.
Published online 2009 November 25. doi:  10.1107/S1600536809049502
PMCID: PMC2971799

Diacetato{4′-[4-(benz­yloxy)phen­yl]-2,2′:6′,2′′-terpyridine}zinc(II)

Abstract

In the title compound, [Zn(CH3COO)2(C28H21N3O)], the ZnII ion is in a trigonal–bipyramidal ZnN3O2 coordination with a tridentate N-chelating 4′-[4-(benz­yloxy)phen­yl)-2,2′:6′,2′′-terpyridine ligand in the equatorial position and two acetate anions in the axial positions. The three pyridine rings are approximately coplanar, with a maximum deviation of 0.03 Å from the mean plane. The phen­oxy substituent makes a dihedral angle of 18.1 (2)° with the central pyridine ring. The benzyl group has a C—O—C—C torsion angle of 77.62 (8)° relative to the phen­oxy ring. In the crystal, mol­ecules are linked via C—H(...)O hydrogen bonds.

Related literature

For the synthesis of functionalized terpyridines, see: Heller & Schubert (2003 [triangle]). For other structures with terpyridine ligands, see: Duprez et al. (2005 [triangle]). For a transtrans arrangement of the pyridine rings about the inter­annular C—C bonds in the structure of a similar ligand, see: Anthonysamy et al. (2007 [triangle]). PLATON (Spek, 2009 [triangle]) was used for structure evaluation.

An external file that holds a picture, illustration, etc.
Object name is e-65-m1672-scheme1.jpg

Experimental

Crystal data

  • [Zn(C2H3O2)2(C28H21N3O)]
  • M r = 598.94
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1672-efi1.jpg
  • a = 8.3959 (17) Å
  • b = 15.564 (3) Å
  • c = 10.702 (2) Å
  • β = 102.23 (3)°
  • V = 1366.7 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.95 mm−1
  • T = 291 K
  • 0.26 × 0.23 × 0.21 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.791, T max = 0.826
  • 13194 measured reflections
  • 5859 independent reflections
  • 3538 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.106
  • S = 0.98
  • 5859 reflections
  • 373 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.56 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2733 Friedel pairs
  • Flack parameter: 0.108 (13)

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049502/wm2284sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049502/wm2284Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Guang Feng Hou for the single-crystal analysis.

supplementary crystallographic information

Comment

Functionalized terpyridines are interesting materials (Heller & Schubert, 2003). 2,2':6',2"-terpyridine and its derivatives have been used as key building blocks in supramolecular frameworks (Duprez et al., 2005). We report here the crystal structure of the title compound, (I).

In the molecular structure of (I) (Fig. 1), the three pyridine rings are approximately coplanar (max. deviation from the mean plane 0.03 Å). The ZnII ion is in a trigonal-bipyramidal coordination by a neutral tridentate 4'-[4-(benzyloxy)phenyl)-2,2':6',2"-terpyridine ligand in equatorial and two acetate anions in axial positions (Table 1). The phenoxy substituent makes a dihedral angle of 18.1 (2)° with the central pyridine ring. The torsion angle between the benzoyl group and the attached phenoxy ring, defined by atoms C19—O01—C22—C23, is 77.6 (7)°.

Molecules of (I) are linked via O—H···C hydrogen bonds, as shown in Fig. 2. Molecules associate via C(22)—H(22B)···O(4)#3 interactions, forming a chain along the b axis. Adjacent chains are interconnected via C(4)—H(4)···O(5)#1 and C(12)—H(12)···O(3)#2 interactions, leading to the formation of a two dimensional network (Table 2).

In the structure of a similar ligand molecule (Anthonysamy et al., 2007) a trans-trans arrangement of the pyridine rings about the interannular C—C bonds is observed.

Experimental

To a tetrahydrofuran solution (10 ml) of the ligand L (0.100 g, 0.241 mmol) was slowly added a methanolic solution (10 ml) of zinc acetate (0.044 g, 0.241 mmol). After stirring for 3 h at ambient temperature, a white solid was collected by filtration and washed with MeOH. Colorless single crystals suitable for X-ray determination were obtained by vapour diffusion of diethyl ether into a methanol solution of the powder sample over the course of 5 days.

Refinement

Aromatic H atoms were fixed at C—H distances of 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C). Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.96–0.97 Å and with Uiso(H) = 1.5 Ueq(C). PLATON (Spek, 2009) suggests a (pseudo)-centrosymmetric structure in space group P21/c. However, attempts to refine the structure in the centrosymmetric space group led to significantly higher residuals, high anisotropic displacement parameters and some disordered atoms. The crystal under investigation was refined as an inversion twin with a twin component ration of ca. 9:1.

Figures

Fig. 1.
A view of the title compound (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A view of a hydrogen-bonded (dashed lines) chain in (I). H atoms not involved in hydrogen bonding have been omitted.

Crystal data

[Zn(C2H3O2)2(C28H21N3O)]F(000) = 620
Mr = 598.94Dx = 1.455 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 8985 reflections
a = 8.3959 (17) Åθ = 3.1–27.4°
b = 15.564 (3) ŵ = 0.95 mm1
c = 10.702 (2) ÅT = 291 K
β = 102.23 (3)°Block, colorless
V = 1366.7 (5) Å30.26 × 0.23 × 0.21 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer5859 independent reflections
Radiation source: fine-focus sealed tube3538 reflections with I > 2σ(I)
graphiteRint = 0.043
ω scanθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −10→10
Tmin = 0.791, Tmax = 0.826k = −20→20
13194 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.106w = 1/[σ2(Fo2) + (0.0503P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
5859 reflectionsΔρmax = 0.48 e Å3
373 parametersΔρmin = −0.56 e Å3
2 restraintsAbsolute structure: Flack (1983), 2733 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.108 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.8831 (7)0.3046 (4)0.9729 (6)0.0593 (17)
H10.86400.24570.96950.071*
C21.0368 (7)0.3342 (4)1.0203 (7)0.071 (2)
H21.12250.29561.04320.085*
C31.0655 (6)0.4200 (4)1.0342 (5)0.0584 (15)
H31.16900.44041.07070.070*
C40.9378 (6)0.4766 (4)0.9929 (5)0.0547 (14)
H40.95380.53570.99890.066*
C50.7855 (6)0.4424 (3)0.9424 (5)0.0457 (12)
C60.6379 (6)0.4966 (3)0.8920 (5)0.0436 (13)
C70.6359 (6)0.5845 (3)0.8898 (5)0.0505 (14)
H70.73200.61500.91870.061*
C80.4896 (7)0.6291 (2)0.8440 (7)0.0441 (10)
C90.3513 (6)0.5806 (3)0.8006 (5)0.0478 (13)
H90.25180.60760.77020.057*
C100.3608 (6)0.4912 (3)0.8023 (5)0.0423 (13)
C110.2215 (6)0.4320 (3)0.7578 (5)0.0475 (13)
C120.0654 (6)0.4599 (4)0.7014 (5)0.0571 (15)
H120.04260.51810.68800.068*
C13−0.0562 (7)0.3980 (4)0.6655 (6)0.0645 (17)
H13−0.16220.41480.62920.077*
C14−0.0200 (7)0.3134 (4)0.6834 (6)0.0600 (16)
H14−0.09970.27180.65850.072*
C150.1373 (7)0.2905 (4)0.7393 (6)0.0615 (16)
H150.16060.23250.75360.074*
C160.4862 (7)0.7251 (2)0.8434 (6)0.0482 (11)
C170.6114 (7)0.7729 (4)0.9184 (6)0.0603 (15)
H170.69950.74490.96960.072*
C180.6047 (7)0.8626 (4)0.9167 (6)0.0638 (16)
H180.68780.89430.96760.077*
C190.4755 (6)0.9042 (3)0.8400 (6)0.0562 (14)
C200.3523 (6)0.8577 (3)0.7660 (6)0.0611 (15)
H200.26460.88590.71460.073*
C210.3582 (6)0.7699 (3)0.7674 (5)0.0573 (14)
H210.27400.73920.71610.069*
C220.3569 (6)1.0418 (3)0.7676 (6)0.0794 (14)
H22A0.33361.01690.68250.095*
H22B0.39541.10000.76060.095*
C230.2019 (6)1.0450 (3)0.8165 (5)0.0635 (13)
C240.2036 (7)1.0670 (3)0.9414 (5)0.0758 (14)
H240.30271.07750.99720.091*
C250.0619 (8)1.0737 (4)0.9849 (7)0.0897 (18)
H250.06731.08861.06990.108*
C26−0.0850 (8)1.0595 (4)0.9082 (8)0.0888 (19)
H26−0.17981.06330.93970.107*
C27−0.0913 (7)1.0392 (4)0.7829 (8)0.100 (2)
H27−0.19201.03080.72830.120*
C280.0516 (8)1.0309 (4)0.7351 (6)0.0859 (18)
H280.04561.01610.65000.103*
C290.4567 (6)0.2751 (4)1.0846 (6)0.0572 (15)
C300.4161 (8)0.2233 (5)1.1989 (7)0.100 (2)
H30A0.31330.19471.17160.149*
H30B0.40990.26191.26760.149*
H30C0.49990.18151.22760.149*
C310.5525 (6)0.2511 (4)0.6214 (6)0.0605 (15)
C320.5948 (9)0.1794 (4)0.5365 (6)0.086 (2)
H32A0.49850.16260.47570.129*
H32B0.63710.13090.58850.129*
H32C0.67540.19970.49190.129*
N10.7606 (5)0.3578 (3)0.9319 (5)0.0481 (11)
N20.5019 (6)0.45091 (16)0.8450 (5)0.0440 (7)
N30.2591 (6)0.3473 (3)0.7745 (5)0.0523 (12)
O10.4850 (6)0.99246 (16)0.8480 (6)0.0784 (10)
O20.4764 (5)0.2367 (3)0.9965 (4)0.0664 (11)
O30.4605 (6)0.3537 (3)1.1031 (5)0.0977 (14)
O40.5539 (5)0.2307 (2)0.7346 (4)0.0696 (11)
O50.5191 (7)0.3222 (3)0.5782 (5)0.1088 (18)
Zn10.50944 (8)0.31689 (2)0.85645 (8)0.05098 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.049 (3)0.046 (3)0.082 (4)0.007 (2)0.012 (3)0.009 (3)
C20.042 (3)0.078 (4)0.092 (5)0.017 (3)0.010 (3)0.010 (3)
C30.042 (3)0.066 (3)0.063 (3)−0.001 (3)0.002 (2)0.000 (3)
C40.043 (3)0.056 (3)0.065 (3)0.001 (2)0.011 (2)−0.004 (3)
C50.040 (3)0.044 (3)0.056 (3)−0.001 (2)0.017 (2)0.000 (2)
C60.039 (3)0.037 (3)0.056 (3)0.003 (2)0.013 (2)−0.005 (2)
C70.046 (3)0.042 (3)0.064 (3)−0.009 (2)0.013 (2)−0.003 (2)
C80.043 (3)0.0359 (16)0.055 (3)0.003 (2)0.013 (2)0.001 (3)
C90.037 (3)0.041 (3)0.065 (3)0.000 (2)0.010 (2)0.000 (2)
C100.040 (3)0.037 (3)0.049 (3)0.004 (2)0.009 (2)−0.003 (2)
C110.040 (3)0.047 (3)0.057 (3)−0.004 (2)0.012 (2)0.003 (2)
C120.050 (3)0.051 (3)0.068 (4)0.004 (2)0.007 (3)0.003 (3)
C130.039 (3)0.071 (4)0.081 (4)−0.005 (3)0.007 (2)−0.001 (3)
C140.048 (3)0.055 (3)0.073 (4)−0.014 (2)0.005 (3)−0.009 (2)
C150.053 (3)0.045 (3)0.088 (5)−0.011 (3)0.017 (3)0.001 (3)
C160.051 (3)0.0395 (18)0.057 (3)−0.007 (2)0.018 (2)−0.007 (3)
C170.053 (3)0.044 (3)0.080 (4)0.002 (2)0.005 (3)−0.002 (3)
C180.050 (3)0.043 (3)0.093 (4)−0.004 (2)0.004 (3)−0.010 (3)
C190.050 (4)0.0365 (19)0.082 (4)−0.002 (2)0.014 (3)0.000 (3)
C200.052 (3)0.039 (3)0.092 (4)0.001 (2)0.014 (3)0.005 (3)
C210.053 (3)0.039 (3)0.077 (4)−0.001 (2)0.008 (2)0.007 (3)
C220.082 (4)0.039 (2)0.122 (4)0.002 (2)0.031 (3)0.009 (3)
C230.061 (3)0.034 (2)0.093 (4)0.007 (2)0.011 (3)0.007 (2)
C240.065 (3)0.065 (3)0.095 (4)−0.001 (3)0.013 (3)0.000 (3)
C250.088 (5)0.080 (4)0.109 (5)0.003 (3)0.038 (4)−0.008 (3)
C260.081 (5)0.067 (4)0.124 (6)−0.004 (3)0.036 (4)−0.001 (4)
C270.059 (4)0.087 (5)0.144 (7)0.006 (3)0.001 (4)0.009 (4)
C280.082 (4)0.080 (4)0.090 (5)0.000 (3)0.008 (3)0.001 (3)
C290.031 (2)0.059 (4)0.074 (4)−0.007 (2)−0.006 (2)0.012 (3)
C300.076 (4)0.106 (6)0.113 (5)−0.001 (4)0.013 (4)0.036 (5)
C310.045 (3)0.048 (3)0.084 (4)0.003 (2)0.002 (2)−0.002 (3)
C320.089 (4)0.094 (5)0.074 (4)0.022 (4)0.017 (3)−0.017 (3)
N10.040 (2)0.037 (2)0.071 (3)0.0050 (19)0.020 (2)0.000 (2)
N20.0421 (15)0.0334 (13)0.056 (2)−0.001 (2)0.0103 (14)−0.002 (2)
N30.047 (3)0.040 (2)0.068 (3)0.000 (2)0.010 (2)−0.002 (2)
O10.062 (3)0.0335 (13)0.141 (3)−0.0014 (18)0.024 (2)0.000 (3)
O20.072 (3)0.049 (2)0.083 (3)−0.0032 (19)0.027 (2)0.004 (2)
O30.113 (3)0.073 (3)0.112 (3)−0.017 (3)0.034 (3)−0.019 (3)
O40.078 (3)0.049 (2)0.080 (3)0.008 (2)0.014 (2)−0.001 (2)
O50.138 (5)0.077 (3)0.118 (4)0.024 (3)0.042 (3)0.026 (3)
Zn10.0465 (2)0.0366 (2)0.0702 (3)0.0007 (4)0.01314 (18)0.0003 (4)

Geometric parameters (Å, °)

C1—N11.320 (7)C19—C201.369 (7)
C1—C21.363 (9)C19—O11.377 (5)
C1—H10.9300C20—C211.369 (8)
C2—C31.359 (8)C20—H200.9300
C2—H20.9300C21—H210.9300
C3—C41.385 (7)C22—O11.448 (6)
C3—H30.9300C22—C231.503 (7)
C4—C51.385 (7)C22—H22A0.9700
C4—H40.9300C22—H22B0.9700
C5—N11.334 (7)C23—C241.377 (7)
C5—C61.503 (7)C23—C281.391 (7)
C6—N21.349 (6)C24—C251.370 (8)
C6—C71.368 (8)C24—H240.9300
C7—C81.406 (7)C25—C261.347 (8)
C7—H70.9300C25—H250.9300
C8—C91.381 (7)C26—C271.367 (9)
C8—C161.494 (5)C26—H260.9300
C9—C101.394 (8)C27—C281.406 (9)
C9—H90.9300C27—H270.9300
C10—N21.333 (6)C28—H280.9300
C10—C111.486 (7)C29—O21.158 (6)
C11—N31.359 (7)C29—O31.238 (7)
C11—C121.391 (7)C29—C301.562 (8)
C12—C131.397 (7)C30—H30A0.9600
C12—H120.9300C30—H30B0.9600
C13—C141.355 (8)C30—H30C0.9600
C13—H130.9300C31—O51.209 (7)
C14—C151.376 (8)C31—O41.249 (7)
C14—H140.9300C31—C321.527 (8)
C15—N31.344 (7)C32—H32A0.9600
C15—H150.9300C32—H32B0.9600
C16—C211.390 (7)C32—H32C0.9600
C16—C171.394 (7)Zn1—N12.187 (4)
C17—C181.399 (9)Zn1—N22.090 (3)
C17—H170.9300Zn1—N32.151 (5)
C18—C191.376 (7)Zn1—O22.014 (4)
C18—H180.9300Zn1—O41.961 (4)
N1—C1—C2121.4 (6)O1—C22—H22A108.9
N1—C1—H1119.3C23—C22—H22A108.9
C2—C1—H1119.3O1—C22—H22B108.9
C3—C2—C1120.3 (6)C23—C22—H22B108.9
C3—C2—H2119.9H22A—C22—H22B107.7
C1—C2—H2119.9C24—C23—C28118.0 (5)
C2—C3—C4118.8 (5)C24—C23—C22121.0 (5)
C2—C3—H3120.6C28—C23—C22120.9 (5)
C4—C3—H3120.6C25—C24—C23121.1 (5)
C5—C4—C3117.9 (6)C25—C24—H24119.4
C5—C4—H4121.0C23—C24—H24119.4
C3—C4—H4121.0C26—C25—C24122.0 (7)
N1—C5—C4121.8 (5)C26—C25—H25119.0
N1—C5—C6115.0 (4)C24—C25—H25119.0
C4—C5—C6123.2 (5)C25—C26—C27118.4 (6)
N2—C6—C7121.0 (5)C25—C26—H26120.8
N2—C6—C5113.9 (4)C27—C26—H26120.8
C7—C6—C5125.1 (5)C26—C27—C28121.3 (5)
C6—C7—C8120.4 (5)C26—C27—H27119.3
C6—C7—H7119.8C28—C27—H27119.3
C8—C7—H7119.8C23—C28—C27119.2 (6)
C9—C8—C7117.3 (3)C23—C28—H28120.4
C9—C8—C16122.1 (5)C27—C28—H28120.4
C7—C8—C16120.6 (5)O2—C29—O3129.6 (6)
C8—C9—C10120.0 (5)O2—C29—C30117.6 (5)
C8—C9—H9120.0O3—C29—C30112.8 (6)
C10—C9—H9120.0C29—C30—H30A109.5
N2—C10—C9121.2 (5)C29—C30—H30B109.5
N2—C10—C11113.6 (5)H30A—C30—H30B109.5
C9—C10—C11125.2 (5)C29—C30—H30C109.5
N3—C11—C12122.1 (5)H30A—C30—H30C109.5
N3—C11—C10114.4 (4)H30B—C30—H30C109.5
C12—C11—C10123.4 (5)O5—C31—O4123.8 (6)
C11—C12—C13118.1 (6)O5—C31—C32120.4 (7)
C11—C12—H12121.0O4—C31—C32115.8 (5)
C13—C12—H12121.0C31—C32—H32A109.5
C14—C13—C12120.1 (5)C31—C32—H32B109.5
C14—C13—H13119.9H32A—C32—H32B109.5
C12—C13—H13119.9C31—C32—H32C109.5
C13—C14—C15118.6 (6)H32A—C32—H32C109.5
C13—C14—H14120.7H32B—C32—H32C109.5
C15—C14—H14120.7C1—N1—C5119.6 (5)
N3—C15—C14123.7 (6)C1—N1—Zn1124.2 (4)
N3—C15—H15118.1C5—N1—Zn1116.1 (3)
C14—C15—H15118.1C10—N2—C6120.0 (3)
C21—C16—C17117.7 (4)C10—N2—Zn1120.2 (4)
C21—C16—C8121.0 (5)C6—N2—Zn1119.5 (4)
C17—C16—C8121.3 (5)C15—N3—C11117.3 (5)
C16—C17—C18120.2 (5)C15—N3—Zn1126.1 (4)
C16—C17—H17119.9C11—N3—Zn1116.6 (3)
C18—C17—H17119.9C19—O1—C22117.8 (4)
C19—C18—C17120.1 (5)C29—O2—Zn1110.5 (4)
C19—C18—H18119.9C31—O4—Zn1120.5 (4)
C17—C18—H18119.9O4—Zn1—O298.42 (13)
C20—C19—C18120.0 (4)O4—Zn1—N2130.6 (2)
C20—C19—O1126.1 (5)O2—Zn1—N2130.9 (2)
C18—C19—O1113.8 (5)O4—Zn1—N3100.76 (19)
C21—C20—C19120.0 (5)O2—Zn1—N399.39 (18)
C21—C20—H20120.0N2—Zn1—N375.02 (19)
C19—C20—H20120.0N4—Zn1—N198.04 (17)
C20—C21—C16122.0 (5)O2—Zn1—N1100.36 (18)
C20—C21—H21119.0N2—Zn1—N175.28 (18)
C16—C21—H21119.0N3—Zn1—N1150.30 (11)
O1—C22—C23113.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O5i0.932.393.293 (7)163
C12—H12···O3ii0.932.243.147 (7)165
C22—H22B···O4iii0.972.483.429 (6)166

Symmetry codes: (i) x+1/2, −y+1, z+1/2; (ii) x−1/2, −y+1, z−1/2; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2284).

References

  • Anthonysamy, A., Balasubramanian, S., Chinnakali, K. & Fun, H.-K. (2007). Acta Cryst. E63, o1148–o1150.
  • Duprez, V., Biancardo, M., Spanggaard, H. & Krebs, F. C. (2005). Macromolecules, 38, 10436–10448.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Heller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. pp. 947–961.
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography