PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1568–m1569.
Published online 2009 November 14. doi:  10.1107/S1600536809046911
PMCID: PMC2971796

catena-Poly[diammonium [diaqua­bis(pyridine-2,4-dicarboxyl­ato-κ2 N,O 2)cuprate(II)] [[diaqua­copper(II)]-μ-pyridine-2,4-dicarboxyl­ato-κ3 N,O 2:O 2′-[tetra­aqua­cadmium(II)]-μ-pyridine-2,4-dicarboxyl­ato-κ3 O 2:N,O 2′] hexa­hydrate]

Abstract

The title mixed-metal complex, {(NH4)2[Cu(C7H3NO4)2(H2O)2][CdCu(C7H3NO4)2(H2O)6]·6H2O}n, contains one octa­hedrally coordinated CdII center and two octa­hedrally coordinated CuII centers, each lying on an inversion center. The two CuII atoms are each coordinated by two O atoms and two N atoms from two 2,4-pydc (2,4-H2pydc = pyridine-2,4-dicarboxylic acid) ligands in the equatorial plane and two water mol­ecules at the axial sites, thus producing two crystallographically independent [Cu(2,4-pydc)2(H2O)2]2− metalloligands. One metalloligand exists as a discrete anion and the other connects the Cd(H2O)4 units, forming a neutral chain. O—H(...)O and N—H(...)O hydrogen bonds connects the polymeric chains, complex anions, ammonium cations and uncoordinated water mol­ecules into a three-dimensional supra­molecular network.

Related literature

For general background to coordination polymers, see: Caneschi et al. (2001 [triangle]); Dong et al. (2000 [triangle]); Evans & Lin (2002 [triangle]); Kitagawa et al. (1999 [triangle], 2004 [triangle], 2006 [triangle]). For related structures, see: Li et al. (2008 [triangle]); Noro et al. (2002a [triangle],b [triangle]); Wang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1568-scheme1.jpg

Experimental

Crystal data

  • (NH4)2[Cu(C7H3NO4)2(H2O)2][CdCu(C7H3NO4)2(H2O)6]·6H2O
  • M r = 1188.20
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1568-efi1.jpg
  • a = 10.4520 (19) Å
  • b = 10.5252 (19) Å
  • c = 10.6733 (19) Å
  • α = 102.869 (2)°
  • β = 103.536 (2)°
  • γ = 94.834 (2)°
  • V = 1101.3 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.54 mm−1
  • T = 293 K
  • 0.22 × 0.20 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.720, T max = 0.785
  • 6205 measured reflections
  • 4212 independent reflections
  • 3869 reflections with I > 2σ(I)
  • R int = 0.011

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.073
  • S = 1.05
  • 4212 reflections
  • 361 parameters
  • 31 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809046911/bg2303sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046911/bg2303Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Changchun Institute of Applied Chemistry for supporting this work.

supplementary crystallographic information

Comment

Coordination polymers constructed from metal ions and bridging ligands have been of great interest owing to their structural diversities and fascinating properties (Caneschi et al., 2001; Evans & Lin, 2002; Kitagawa et al., 1999, 2004). In recent years, the design and synthesis of mixed-metal coordination polymers have received much attention because such heterometallic materials might exhibit interesting physical properties, resulting from interactions between two neighboring metal centers connected by a suitable linker (Dong et al., 2000; Kitagawa et al., 2006). Noro et al. (2002a, b) have prepared mixed-metal coordination polymers by using the Et3NH salt of a metalloligand, [Cu(2,4-pydc)2]2- (2,4-H2pydc = pyridine-2,4-dicarboxylic acid). We prepared recently a mixed-metal complex with a metalloligand [Cu(2,5-pydc)2]2- by a simplified synthetic method (Wang et al., 2009). As a continuation of our work, we report here the synthesis and structure of the title compound.

The asymmetric unit of the title compound contains one six-coordinated CdII atom and two six-coordinated CuII atoms, each lying on an inversion center, two 2,4-pydc ligands, one ammonium ion, four coordinated water molecules and three uncoordinated water molecules (Fig. 1). Both Cu1 and Cu2 atoms have an axially elongated octahedral coordination geometry, defined by two O atoms and two N atoms from two 2,4-pydc ligands in the equatorial plane and two water molecules at the axial sites, thus producing two crystallographically independent [Cu(2,4-pydc)2(H2O)2]2- metalloligands. In each metalloligand, the equatorial plane consists of trans N donors and trans O donors. The CdII ions coordinated by four water molecules are linked by the Cu1-metalloligands, via the bidentate-bridging 2-carboxylate groups, into a one-dimensional polymeric chain along the [100] direction (Fig. 2). The shortest Cu···Cd distance is 5.226 (1) Å. The 2,4-pydc ligand binds Cu1 and Cd1 atoms in a µ2-(κ3N,O2:O2') mode with the 4-carboxylate group uncoordinated (Li et al., 2008). The Cu2-metalloligand acts as a discrete divalent anion and does not interact with a second metal ion. The 2,4-pydc ligand in the Cu2-metalloligand adopts a (κ2N,O2) chelating mode with the 4-carboxylate group remaining idle. Extensive O—H···O and N—H···O hydrogen bonds (Table 1) assemble the various components into a supramolecular network (Fig. 3).

Experimental

An aqueous solution (20 ml) of Cu(NO3)2.3H2O (0.125 g, 0.3 mmol) and a suspension of 2,4-H2pydc (0.083 g, 0.3 mmol) in ethanol (10 ml) were mixed and refluxed for 24 h until a clear solution was obtained. To this solution, an aqueous solution (5 ml) of CdCl2 (0.055 g, 0.5 mmol) was added. Aqueous NH3 (25%, 0.06 ml) was then slowly added to the reaction mixture. The resulting solution was filtered off. Blue block crystals were obtained by allowing the filtrate to stand at room temperature for several days.

Refinement

H atoms on C atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). H atoms of water molecules and ammonium ion were located in a difference Fourier map and refined with distance restraints of O—H = 0.96 (1), H···H = 1.56 (1) Å, and N—H = 0.99 (1), H···H = 1.62 (1) Å, and with Uiso(H) = 1.2Ueq(O,N).

Figures

Fig. 1.
The asymmetric unit of the title compound, together with symmetry-related atoms to complete the Cd1, Cu1 and Cu2 coordination. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) ...
Fig. 2.
The one-dimensional chain in the title compound. H atoms have been omitted for clarity.
Fig. 3.
The crystal packing of the title compound. Dashed lines denote hydrogen bonds.

Crystal data

(NH4)2[Cu(C7H3NO4)2(H2O)2][CdCu(C7H3NO4)2(H2O)6]·6H2OZ = 1
Mr = 1188.20F(000) = 604
Triclinic, P1Dx = 1.792 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4520 (19) ÅCell parameters from 4140 reflections
b = 10.5252 (19) Åθ = 2.5–26.1°
c = 10.6733 (19) ŵ = 1.54 mm1
α = 102.869 (2)°T = 293 K
β = 103.536 (2)°Block, blue
γ = 94.834 (2)°0.22 × 0.20 × 0.16 mm
V = 1101.3 (3) Å3

Data collection

Bruker SMART APEX CCD diffractometer4212 independent reflections
Radiation source: fine-focus sealed tube3869 reflections with I > 2σ(I)
graphiteRint = 0.011
[var phi] and ω scansθmax = 26.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→8
Tmin = 0.720, Tmax = 0.785k = −12→12
6205 measured reflectionsl = −11→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0412P)2 + 0.7186P] where P = (Fo2 + 2Fc2)/3
4212 reflections(Δ/σ)max = 0.004
361 parametersΔρmax = 0.67 e Å3
31 restraintsΔρmin = −0.41 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.00000.00000.50000.02604 (8)
Cu10.50000.00000.50000.02460 (10)
Cu20.50000.50001.00000.03268 (11)
N10.44406 (17)0.04440 (17)0.32615 (17)0.0221 (4)
N20.60608 (19)0.56353 (19)0.88835 (18)0.0282 (4)
O10.30942 (15)−0.02363 (16)0.48585 (15)0.0281 (3)
O20.11497 (15)−0.03483 (18)0.34073 (16)0.0342 (4)
O30.1713 (2)−0.0467 (2)−0.13119 (19)0.0591 (6)
O40.30140 (19)0.1332 (2)−0.12763 (17)0.0439 (5)
O50.35050 (16)0.49779 (19)0.84955 (17)0.0369 (4)
O60.30210 (18)0.5639 (2)0.6633 (2)0.0490 (5)
O70.71230 (17)0.72200 (19)0.51106 (18)0.0391 (4)
O80.89977 (16)0.65182 (18)0.59992 (18)0.0366 (4)
C10.2382 (2)−0.0169 (2)0.3746 (2)0.0239 (4)
C20.3115 (2)0.0180 (2)0.2780 (2)0.0227 (4)
C30.2475 (2)0.0220 (2)0.1505 (2)0.0269 (5)
H30.15570.00010.11860.032*
C40.3247 (2)0.0598 (2)0.0707 (2)0.0267 (5)
C50.2599 (2)0.0495 (3)−0.0752 (2)0.0327 (5)
C60.4603 (2)0.0970 (2)0.1247 (2)0.0262 (5)
H60.51240.13010.07630.031*
C70.5176 (2)0.0845 (2)0.2518 (2)0.0255 (4)
H70.60940.10460.28580.031*
C80.7820 (2)0.6710 (2)0.5938 (2)0.0280 (5)
C90.7192 (2)0.6332 (2)0.6975 (2)0.0270 (5)
C100.7977 (2)0.6251 (3)0.8193 (2)0.0337 (5)
H100.88980.64210.83790.040*
C110.7380 (2)0.5914 (3)0.9128 (2)0.0340 (5)
H110.79130.58820.99480.041*
C120.5292 (2)0.5726 (2)0.7720 (2)0.0261 (5)
C130.5820 (2)0.6079 (2)0.6751 (2)0.0258 (4)
H130.52620.61470.59580.031*
C140.3820 (2)0.5433 (2)0.7580 (2)0.0305 (5)
O1W0.14804 (16)0.17674 (17)0.64065 (16)0.0324 (4)
H1A0.202 (2)0.205 (3)0.590 (2)0.039*
H1B0.201 (2)0.159 (3)0.7184 (16)0.039*
O2W0.08911 (16)−0.15033 (17)0.60774 (17)0.0323 (4)
H2A0.121 (2)−0.102 (2)0.6985 (13)0.039*
H2B0.023 (2)−0.2214 (18)0.603 (2)0.039*
O3W0.46396 (19)−0.24026 (19)0.37308 (18)0.0397 (4)
H3A0.3913 (16)−0.275 (3)0.399 (3)0.048*
H3B0.5449 (13)−0.261 (3)0.419 (3)0.048*
O4W0.4544 (2)0.7280 (2)1.10086 (19)0.0445 (4)
H4A0.447 (3)0.731 (3)1.1887 (15)0.053*
H4B0.5379 (17)0.775 (3)1.106 (3)0.053*
O5W0.1659 (2)−0.2927 (2)−0.0551 (2)0.0585 (6)
H5A0.2575 (14)−0.294 (3)−0.016 (3)0.070*
H5B0.158 (3)−0.213 (2)−0.084 (3)0.070*
O6W0.2430 (2)0.6784 (2)0.4538 (2)0.0459 (5)
H6A0.260 (3)0.632 (2)0.522 (2)0.055*
H6B0.210 (3)0.7573 (18)0.488 (3)0.055*
O7W0.0227 (3)−0.2976 (3)0.1422 (3)0.0668 (7)
H7A0.033 (3)−0.2138 (19)0.202 (3)0.080*
H7B0.083 (3)−0.297 (3)0.088 (3)0.080*
N31.0503 (2)0.4588 (2)0.6944 (3)0.0482 (6)
H311.020 (2)0.406 (2)0.749 (2)0.058*
H320.9847 (18)0.5165 (19)0.666 (2)0.058*
H331.1357 (14)0.5156 (19)0.745 (2)0.058*
H341.065 (2)0.4011 (19)0.6132 (15)0.058*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.02452 (13)0.03503 (14)0.02213 (13)0.00417 (9)0.00922 (9)0.01115 (9)
Cu10.02026 (19)0.0393 (2)0.01908 (19)0.00659 (15)0.00640 (15)0.01509 (16)
Cu20.0253 (2)0.0519 (3)0.0262 (2)−0.00001 (18)0.00792 (17)0.02147 (19)
N10.0217 (9)0.0281 (9)0.0180 (8)0.0046 (7)0.0060 (7)0.0077 (7)
N20.0284 (10)0.0354 (10)0.0239 (9)0.0021 (8)0.0081 (8)0.0132 (8)
O10.0248 (8)0.0418 (9)0.0230 (8)0.0056 (7)0.0091 (6)0.0158 (7)
O20.0214 (8)0.0579 (11)0.0241 (8)0.0019 (7)0.0082 (7)0.0113 (8)
O30.0686 (15)0.0667 (14)0.0275 (10)−0.0263 (12)−0.0090 (10)0.0183 (9)
O40.0468 (11)0.0582 (12)0.0280 (9)−0.0027 (9)0.0038 (8)0.0235 (9)
O50.0264 (9)0.0565 (11)0.0323 (9)−0.0003 (8)0.0089 (7)0.0214 (8)
O60.0295 (9)0.0816 (15)0.0422 (11)0.0023 (9)0.0037 (8)0.0367 (11)
O70.0360 (9)0.0528 (11)0.0423 (10)0.0131 (8)0.0178 (8)0.0298 (9)
O80.0295 (9)0.0450 (10)0.0460 (10)0.0076 (7)0.0177 (8)0.0241 (8)
C10.0238 (11)0.0291 (11)0.0201 (10)0.0040 (8)0.0076 (8)0.0068 (8)
C20.0219 (10)0.0292 (11)0.0199 (10)0.0055 (8)0.0077 (8)0.0087 (8)
C30.0220 (11)0.0375 (12)0.0216 (11)0.0040 (9)0.0047 (9)0.0096 (9)
C40.0305 (12)0.0319 (12)0.0191 (10)0.0054 (9)0.0063 (9)0.0089 (9)
C50.0345 (13)0.0440 (14)0.0214 (11)0.0053 (11)0.0069 (10)0.0124 (10)
C60.0290 (11)0.0314 (11)0.0213 (10)0.0021 (9)0.0110 (9)0.0092 (9)
C70.0231 (11)0.0322 (12)0.0236 (11)0.0030 (9)0.0088 (9)0.0095 (9)
C80.0308 (12)0.0278 (11)0.0310 (12)0.0035 (9)0.0139 (10)0.0129 (9)
C90.0305 (12)0.0263 (11)0.0285 (11)0.0041 (9)0.0127 (9)0.0104 (9)
C100.0257 (12)0.0453 (14)0.0328 (12)0.0026 (10)0.0090 (10)0.0149 (11)
C110.0263 (12)0.0498 (15)0.0291 (12)0.0031 (10)0.0058 (10)0.0190 (11)
C120.0277 (11)0.0267 (11)0.0263 (11)0.0037 (9)0.0092 (9)0.0091 (9)
C130.0280 (11)0.0299 (11)0.0223 (10)0.0035 (9)0.0085 (9)0.0104 (9)
C140.0280 (12)0.0377 (13)0.0274 (12)0.0017 (10)0.0076 (10)0.0123 (10)
O1W0.0271 (8)0.0448 (10)0.0260 (8)−0.0001 (7)0.0065 (7)0.0126 (7)
O2W0.0289 (9)0.0393 (9)0.0310 (9)0.0019 (7)0.0074 (7)0.0150 (7)
O3W0.0398 (10)0.0460 (11)0.0390 (10)0.0101 (8)0.0139 (8)0.0168 (8)
O4W0.0488 (12)0.0475 (11)0.0367 (10)−0.0018 (9)0.0118 (9)0.0120 (9)
O5W0.0555 (13)0.0568 (13)0.0681 (15)0.0083 (11)0.0205 (12)0.0208 (11)
O6W0.0532 (12)0.0450 (11)0.0466 (11)0.0098 (9)0.0174 (9)0.0205 (9)
O7W0.0744 (17)0.0650 (15)0.0564 (15)−0.0103 (13)0.0218 (13)0.0085 (12)
N30.0302 (12)0.0545 (15)0.0682 (17)0.0102 (10)0.0157 (11)0.0277 (13)

Geometric parameters (Å, °)

Cd1—O22.2850 (16)C3—H30.9300
Cd1—O2i2.2850 (16)C4—C61.384 (3)
Cd1—O1W2.3004 (17)C4—C51.521 (3)
Cd1—O2Wi2.2915 (17)C6—C71.389 (3)
Cd1—O2W2.2915 (17)C6—H60.9300
Cd1—O1Wi2.3004 (17)C7—H70.9300
Cu1—O1ii1.9523 (15)C8—C91.519 (3)
Cu1—O11.9523 (15)C9—C131.390 (3)
Cu1—N11.9819 (17)C9—C101.389 (3)
Cu1—N1ii1.9819 (17)C10—C111.386 (3)
Cu1—O3Wii2.539 (2)C10—H100.9300
Cu1—O3W2.539 (2)C11—H110.9300
Cu2—O51.9553 (17)C12—C131.385 (3)
Cu2—O5iii1.9553 (17)C12—C141.509 (3)
Cu2—N21.9862 (18)C13—H130.9300
Cu2—N2iii1.9862 (18)O1W—H1A0.94 (2)
Cu2—O4Wiii2.535 (2)O1W—H1B0.95 (2)
Cu2—O4W2.535 (2)O2W—H2A0.95 (1)
N1—C71.334 (3)O2W—H2B0.95 (1)
N1—C21.342 (3)O3W—H3A0.94 (1)
N2—C111.336 (3)O3W—H3B0.94 (1)
N2—C121.340 (3)O4W—H4A0.95 (1)
O1—C11.266 (3)O4W—H4B0.95 (1)
O2—C11.239 (3)O5W—H5A0.95 (1)
O3—C51.246 (3)O5W—H5B0.96 (1)
O4—C51.244 (3)O6W—H6A0.95 (1)
O5—C141.275 (3)O6W—H6B0.96 (3)
O6—C141.224 (3)O7W—H7A0.95 (3)
O7—C81.255 (3)O7W—H7B0.95 (3)
O8—C81.253 (3)N3—H310.98 (2)
C1—C21.509 (3)N3—H320.99 (2)
C2—C31.379 (3)N3—H330.99 (1)
C3—C41.397 (3)N3—H340.99 (2)
O2—Cd1—O2i180.00 (6)N1—C2—C3122.80 (19)
O2—Cd1—O2Wi84.25 (6)N1—C2—C1114.40 (18)
O2i—Cd1—O2Wi95.75 (6)C3—C2—C1122.80 (19)
O2—Cd1—O2W95.75 (6)C2—C3—C4118.1 (2)
O2i—Cd1—O2W84.25 (6)C2—C3—H3121.0
O2Wi—Cd1—O2W180.0C4—C3—H3121.0
O2—Cd1—O1W95.40 (6)C6—C4—C3118.78 (19)
O2i—Cd1—O1W84.60 (6)C6—C4—C5121.7 (2)
O2Wi—Cd1—O1W85.58 (6)C3—C4—C5119.4 (2)
O2W—Cd1—O1W94.42 (6)O4—C5—O3126.5 (2)
O2—Cd1—O1Wi84.60 (6)O4—C5—C4118.3 (2)
O2i—Cd1—O1Wi95.40 (6)O3—C5—C4115.1 (2)
O2Wi—Cd1—O1Wi94.43 (6)C4—C6—C7119.3 (2)
O2W—Cd1—O1Wi85.57 (6)C4—C6—H6120.3
O1W—Cd1—O1Wi179.999 (1)C7—C6—H6120.3
O1ii—Cu1—O1180.0N1—C7—C6121.5 (2)
O1ii—Cu1—N196.26 (7)N1—C7—H7119.2
O1—Cu1—N183.74 (7)C6—C7—H7119.2
O1ii—Cu1—N1ii83.74 (7)O8—C8—O7125.5 (2)
O1—Cu1—N1ii96.26 (7)O8—C8—C9117.5 (2)
N1—Cu1—N1ii180.0O7—C8—C9117.0 (2)
O1ii—Cu1—O3Wii85.99 (6)C13—C9—C10117.8 (2)
O1—Cu1—O3Wii94.01 (6)C13—C9—C8121.3 (2)
N1—Cu1—O3Wii92.15 (7)C10—C9—C8120.8 (2)
N1ii—Cu1—O3Wii87.85 (7)C11—C10—C9119.8 (2)
O1ii—Cu1—O3W94.01 (6)C11—C10—H10120.1
O1—Cu1—O3W85.99 (6)C9—C10—H10120.1
N1—Cu1—O3W87.85 (7)N2—C11—C10121.8 (2)
N1ii—Cu1—O3W92.15 (7)N2—C11—H11119.1
O3Wii—Cu1—O3W180.00 (4)C10—C11—H11119.1
O5—Cu2—O5iii180.0N2—C12—C13122.2 (2)
O5—Cu2—N283.06 (7)N2—C12—C14114.18 (19)
O5iii—Cu2—N296.94 (7)C13—C12—C14123.7 (2)
O5—Cu2—N2iii96.95 (7)C12—C13—C9119.4 (2)
O5iii—Cu2—N2iii83.05 (7)C12—C13—H13120.3
N2—Cu2—N2iii179.998 (1)C9—C13—H13120.3
O5—Cu2—O4Wiii94.09 (7)O6—C14—O5124.6 (2)
O5iii—Cu2—O4Wiii85.91 (7)O6—C14—C12119.9 (2)
N2—Cu2—O4Wiii86.13 (7)O5—C14—C12115.49 (19)
N2iii—Cu2—O4Wiii93.87 (7)Cd1—O1W—H1A106.3 (16)
O5—Cu2—O4W85.91 (7)Cd1—O1W—H1B114.8 (16)
O5iii—Cu2—O4W94.09 (7)H1A—O1W—H1B110 (1)
N2—Cu2—O4W93.87 (7)Cd1—O2W—H2A104.0 (16)
N2iii—Cu2—O4W86.13 (7)Cd1—O2W—H2B112.0 (16)
O4Wiii—Cu2—O4W180.0H2A—O2W—H2B108 (1)
C7—N1—C2119.16 (18)H3A—O3W—H3B112 (1)
C7—N1—Cu1129.85 (15)H4A—O4W—H4B109 (3)
C2—N1—Cu1110.76 (13)H5A—O5W—H5B108 (3)
C11—N2—C12119.09 (19)H6A—O6W—H6B108 (1)
C11—N2—Cu2128.85 (15)H7A—O7W—H7B110 (3)
C12—N2—Cu2112.00 (15)H31—N3—H32112 (1)
C1—O1—Cu1113.79 (13)H31—N3—H33110 (1)
C1—O2—Cd1119.57 (14)H32—N3—H33108 (1)
C14—O5—Cu2114.67 (15)H31—N3—H34111 (1)
O2—C1—O1125.21 (19)H32—N3—H34108 (1)
O2—C1—C2118.48 (18)H33—N3—H34108 (1)
O1—C1—C2116.30 (18)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1A···O7iv0.94 (2)1.80 (1)2.739 (2)171 (2)
O1W—H1B···O4v0.95 (2)1.82 (1)2.769 (2)177 (3)
O2W—H2A···O3v0.95 (1)1.72 (1)2.657 (3)168 (2)
O2W—H2B···O8vi0.95 (1)1.77 (1)2.722 (2)177 (2)
O3W—H3A···O6Wvii0.94 (1)1.84 (1)2.781 (3)172 (3)
O3W—H3B···O7vii0.94 (1)1.84 (1)2.776 (3)172 (3)
O4W—H4A···O3Wviii0.95 (1)1.89 (1)2.827 (3)169 (2)
O4W—H4B···O4iv0.95 (1)1.80 (1)2.752 (3)176 (2)
O5W—H5A···O4Wix0.95 (1)2.10 (1)3.048 (3)170 (3)
O5W—H5B···O30.96 (1)1.93 (1)2.882 (3)171 (3)
O6W—H6A···O60.95 (1)1.79 (1)2.742 (3)173 (3)
O6W—H6B···O2Wx0.96 (3)2.14 (2)2.991 (3)147 (2)
O7W—H7A···O20.95 (3)2.09 (3)3.009 (3)163 (3)
O7W—H7B···O5W0.95 (3)1.93 (3)2.861 (3)165 (4)
N3—H31···O7Wii0.98 (2)1.90 (2)2.867 (3)174 (2)
N3—H32···O80.99 (2)1.92 (1)2.886 (3)164 (2)
N3—H33···O5Wxi0.99 (1)2.53 (2)3.208 (4)126 (2)
N3—H33···O5xii0.99 (1)2.30 (2)3.131 (3)140 (2)
N3—H33···O6xii0.99 (1)2.19 (2)2.888 (3)126 (2)
N3—H34···O8xiii0.99 (2)2.34 (1)3.277 (3)157 (2)

Symmetry codes: (iv) −x+1, −y+1, −z+1; (v) x, y, z+1; (vi) x−1, y−1, z; (vii) x, y−1, z; (viii) x, y+1, z+1; (ix) x, y−1, z−1; (x) x, y+1, z; (ii) −x+1, −y, −z+1; (xi) x+1, y+1, z+1; (xii) x+1, y, z; (xiii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2303).

References

  • Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Caneschi, A., Gatteschi, D., Lalioti, N., Sangregorio, C., Sessoli, R., Venturi, G., Vindigni, A., Rettori, A., Pini, M. G. & Novak, M. A. (2001). Angew. Chem. Int. Ed. 40, 1760–1763. [PubMed]
  • Dong, Y.-B., Smith, M. D. & zur Loye, H.-C. (2000). Angew. Chem. Int. Ed. 39, 4271–4273.
  • Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522. [PubMed]
  • Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. [PubMed]
  • Kitagawa, S., Noro, S. & Nakamura, T. (2006). Chem. Commun. pp. 701–707. [PubMed]
  • Kitagawa, H., Onodera, N., Sonoyama, T., Yamamoto, M., Fukawa, T., Mitani, T., Seto, M. & Maeda, Y. (1999). J. Am. Chem. Soc. 121, 10068–10080.
  • Li, Z.-G., Wang, G.-H., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2008). CrystEngComm, 10, 173–176.
  • Noro, S., Kitagawa, S., Yamashita, M. & Wada, T. (2002a). Chem. Commun. pp. 222–223. [PubMed]
  • Noro, S., Kitagawa, S., Yamashita, M. & Wada, T. (2002b). CrystEngComm, 4, 162–164.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. C65, m333–m336. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography