PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3218.
Published online 2009 November 25. doi:  10.1107/S1600536809048405
PMCID: PMC2971793

3-Bromo­anilinium picrate

Abstract

In the title compound, C6H7BrN+·C6H2N3O7 , the O atoms of two of the nitro groups are disordered over two sites, the ratios of the refined occupancies being 0.72 (6):0.28 (6) and 0.74 (5):0.26 (5). In the crystal structure, the anions and cations are linked via inter­molecular N—H(...)O hydrogen bonds into chains along [100]. Further stabilization is provided by weak inter­molecular C—H(...)O hydrogen bonds.

Related literature

For background information on the crystallization of ammonium salts with picrate derivatives, see: Harrison et al. (2007 [triangle]); Pascard et al. (1982 [triangle]); Pearson et al. (2007 [triangle]); Wang et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3218-scheme1.jpg

Experimental

Crystal data

  • C6H7BrN+·C6H2N3O7
  • M r = 401.14
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3218-efi1.jpg
  • a = 4.3515 (3) Å
  • b = 12.0757 (8) Å
  • c = 14.0592 (9) Å
  • α = 87.783 (1)°
  • β = 85.945 (1)°
  • γ = 80.533 (1)°
  • V = 726.61 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.88 mm−1
  • T = 298 K
  • 0.16 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.646, T max = 0.762
  • 4689 measured reflections
  • 2818 independent reflections
  • 2225 reflections with I > 2σ(I)
  • R int = 0.090

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.123
  • S = 0.96
  • 2818 reflections
  • 264 parameters
  • 15 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.69 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809048405/lh2949sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048405/lh2949Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Wuhan University of Science and Technology for supporting this study.

supplementary crystallographic information

Comment

The interaction of picric acid and amines has been widely studied and salt formation takes place readily with very low activation energy. Ammonium salts are easy to crystallize and purify when picrate derivatives are present (Pascard et al.,1982;Wang et al.,2003; Pearson et al., 2007; Harrison et al., 2007). Herein, we report the crystal structure of the title compound.

In the title compound, the proton has been transferred from the phenolic hydroxylic group to the amine group, resulting in an 1:1 organic salt (Fig.1). In the crystal structure, the molecular components are linked together by intermolecular N—H···O hydrogen bonds forming a one-dimensional chain running parallel to [100]. Adjacent chains are further linked by two weak intermolecular C—H···O hydrogen bonds (see Fig. 2).

Experimental

Picric acid (0.6873 g, 3 mmol) and 3-Bromoaniline (0.5161 g, 3 mmol) were mixed in 10 ml ethanol. The mixture was kept at room temperature for ten days. Yellow block-shaped crystals suitable for the single-crystal X-ray diffraction were collected from the bottom of the vessel.

Refinement

In the picrate anion two of the nitro groups oxygen atoms are disordered over two positions with refined occupancies 0.72 (6):0.28 (6) and 0.74 (5):0.26 (5) for O2/O3:O2'/O3' and O6/O7:O6'/O7', respectively.

The carbon-bound hydrogen atoms were placed in ideal positions with C—H=0.93Å and Uiso(H) = 1.2Ueq(C). H1A, H1B and H1C atoms were located in a difference map and refined with the restraint of N—H = 0.86 (1)Å and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The asymmetric unit with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. A hydrogen bond is shown by a dashed line. The minor components of disorder are indicated by primed atom labels.
Fig. 2.
Part of the crystal structure with hydrogen bonds shown as dashed lines.

Crystal data

C6H7BrN+·C6H2N3O7Z = 2
Mr = 401.14F(000) = 400
Triclinic, P1Dx = 1.833 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.3515 (3) ÅCell parameters from 2179 reflections
b = 12.0757 (8) Åθ = 2.3–27.6°
c = 14.0592 (9) ŵ = 2.88 mm1
α = 87.783 (1)°T = 298 K
β = 85.945 (1)°Block, yellow
γ = 80.533 (1)°0.16 × 0.12 × 0.10 mm
V = 726.61 (8) Å3

Data collection

Bruker SMART APEX CCD diffractometer2818 independent reflections
Radiation source: fine focus sealed Siemens Mo tube2225 reflections with I > 2σ(I)
graphiteRint = 0.090
0.3° wide ω exposures scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −5→5
Tmin = 0.646, Tmax = 0.762k = −14→12
4689 measured reflectionsl = −17→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.96w = 1/[σ2(Fo2) + (0.0686P)2] where P = (Fo2 + 2Fc2)/3
2818 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.69 e Å3
15 restraintsΔρmin = −0.59 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Br10.31978 (9)1.44651 (3)0.38403 (3)0.0620 (2)
C10.2439 (7)1.1358 (3)0.2852 (2)0.0365 (6)
C20.3254 (7)1.2405 (3)0.2916 (2)0.0400 (7)
H20.44881.26940.24320.048*
C30.2197 (7)1.3015 (3)0.3716 (2)0.0418 (7)
C40.0376 (8)1.2589 (3)0.4453 (2)0.0488 (8)
H4−0.03121.30060.49920.059*
C5−0.0383 (8)1.1533 (3)0.4364 (2)0.0500 (8)
H5−0.15931.12360.48510.060*
C60.0623 (8)1.0912 (3)0.3568 (2)0.0451 (7)
H60.00901.02040.35120.054*
C70.9423 (7)0.8220 (3)0.1767 (2)0.0376 (7)
C80.7948 (7)0.7451 (3)0.2374 (2)0.0401 (7)
C90.8229 (8)0.6320 (3)0.2218 (2)0.0432 (7)
H90.72000.58620.26320.052*
C101.0069 (8)0.5873 (3)0.1436 (2)0.0434 (7)
C111.1497 (7)0.6552 (3)0.0790 (2)0.0433 (7)
H111.26600.62530.02530.052*
C121.1162 (7)0.7672 (3)0.0960 (2)0.0398 (7)
N10.3525 (7)1.0693 (2)0.20133 (19)0.0421 (6)
H1A0.520 (5)1.025 (3)0.215 (2)0.051*
H1B0.400 (8)1.110 (3)0.1527 (17)0.051*
H1C0.229 (7)1.025 (2)0.187 (2)0.051*
N20.6000 (7)0.7845 (3)0.32217 (19)0.0484 (7)
N31.0392 (7)0.4679 (3)0.1282 (2)0.0503 (7)
N41.2620 (7)0.8348 (2)0.02367 (18)0.0490 (7)
O10.9193 (5)0.9265 (2)0.18883 (16)0.0489 (6)
O20.623 (5)0.8764 (8)0.3531 (10)0.066 (3)0.72 (6)
O30.419 (6)0.7259 (14)0.3589 (15)0.081 (4)0.72 (6)
O2'0.506 (13)0.8824 (11)0.334 (2)0.074 (8)0.28 (6)
O3'0.555 (13)0.7092 (12)0.3811 (14)0.058 (8)0.28 (6)
O40.8643 (8)0.4144 (2)0.1743 (2)0.0706 (8)
O51.2388 (7)0.4267 (2)0.0683 (2)0.0661 (7)
O61.223 (5)0.8179 (12)−0.0605 (4)0.068 (3)0.74 (5)
O71.419 (3)0.9014 (12)0.0496 (6)0.064 (3)0.74 (5)
O6'1.340 (11)0.798 (3)−0.0553 (15)0.073 (8)0.26 (5)
O7'1.27 (2)0.935 (3)0.039 (3)0.099 (14)0.26 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0788 (3)0.0419 (2)0.0677 (3)−0.01847 (19)0.0063 (2)−0.01619 (18)
C10.0392 (15)0.0353 (16)0.0344 (15)−0.0054 (13)0.0003 (12)−0.0009 (12)
C20.0447 (16)0.0371 (17)0.0382 (15)−0.0100 (14)0.0045 (13)0.0000 (13)
C30.0465 (17)0.0359 (16)0.0429 (16)−0.0051 (14)−0.0051 (13)−0.0030 (13)
C40.059 (2)0.050 (2)0.0356 (16)−0.0058 (16)0.0021 (14)−0.0039 (14)
C50.062 (2)0.050 (2)0.0379 (17)−0.0161 (17)0.0096 (15)0.0034 (15)
C60.0538 (18)0.0408 (18)0.0416 (17)−0.0132 (15)0.0024 (14)0.0018 (14)
C70.0412 (15)0.0368 (17)0.0363 (15)−0.0098 (13)−0.0032 (12)−0.0045 (12)
C80.0424 (16)0.0492 (19)0.0296 (14)−0.0107 (14)0.0006 (12)−0.0048 (13)
C90.0506 (18)0.0424 (18)0.0389 (16)−0.0159 (15)−0.0021 (13)0.0025 (14)
C100.0568 (19)0.0354 (17)0.0389 (16)−0.0107 (15)−0.0024 (14)−0.0016 (13)
C110.0495 (18)0.0429 (18)0.0375 (16)−0.0091 (15)0.0028 (13)−0.0048 (14)
C120.0448 (16)0.0412 (18)0.0347 (15)−0.0139 (14)0.0033 (12)0.0007 (13)
N10.0517 (16)0.0350 (15)0.0405 (14)−0.0121 (12)0.0048 (12)−0.0042 (11)
N20.0560 (17)0.0534 (19)0.0354 (14)−0.0103 (15)0.0051 (12)−0.0044 (14)
N30.0647 (18)0.0412 (16)0.0463 (15)−0.0100 (14)−0.0090 (14)−0.0012 (13)
N40.0648 (18)0.0423 (17)0.0408 (16)−0.0171 (14)0.0113 (13)−0.0026 (12)
O10.0499 (13)0.0405 (13)0.0580 (14)−0.0141 (10)0.0069 (10)−0.0112 (11)
O20.092 (7)0.048 (4)0.053 (4)−0.007 (3)0.021 (4)−0.012 (2)
O30.078 (8)0.106 (5)0.067 (6)−0.051 (5)0.035 (6)−0.029 (4)
O2'0.079 (18)0.069 (10)0.054 (11)0.028 (8)0.028 (10)0.016 (7)
O3'0.071 (16)0.066 (8)0.043 (7)−0.032 (8)0.010 (8)−0.012 (5)
O40.099 (2)0.0506 (16)0.0676 (17)−0.0332 (16)0.0046 (15)0.0009 (13)
O50.0760 (18)0.0444 (15)0.0747 (17)−0.0016 (13)0.0045 (14)−0.0115 (13)
O60.106 (8)0.061 (5)0.040 (3)−0.029 (5)0.015 (3)−0.006 (2)
O70.067 (4)0.071 (5)0.064 (3)−0.039 (4)0.003 (3)−0.002 (3)
O6'0.097 (18)0.044 (9)0.068 (11)−0.001 (11)0.047 (9)−0.013 (7)
O7'0.14 (4)0.084 (13)0.085 (14)−0.067 (17)0.039 (19)−0.019 (12)

Geometric parameters (Å, °)

Br1—C31.890 (3)C10—C111.383 (4)
C1—C21.376 (4)C10—N31.449 (4)
C1—C61.382 (4)C11—C121.365 (5)
C1—N11.459 (4)C11—H110.9300
C2—C31.377 (4)C12—N41.455 (4)
C2—H20.9300N1—H1A0.856 (10)
C3—C41.394 (4)N1—H1B0.862 (10)
C4—C51.382 (5)N1—H1C0.859 (10)
C4—H40.9300N2—O2'1.200 (10)
C5—C61.377 (5)N2—O31.218 (5)
C5—H50.9300N2—O21.229 (6)
C6—H60.9300N2—O3'1.237 (9)
C7—O11.266 (4)N3—O41.215 (4)
C7—C81.435 (4)N3—O51.223 (4)
C7—C121.439 (4)N4—O6'1.218 (10)
C8—C91.375 (5)N4—O71.220 (6)
C8—N21.461 (4)N4—O61.236 (6)
C9—C101.386 (4)N4—O7'1.240 (10)
C9—H90.9300
C2—C1—C6121.6 (3)C12—C11—H11120.7
C2—C1—N1119.5 (2)C10—C11—H11120.7
C6—C1—N1118.8 (3)C11—C12—C7125.2 (3)
C1—C2—C3118.4 (3)C11—C12—N4115.8 (3)
C1—C2—H2120.8C7—C12—N4118.9 (3)
C3—C2—H2120.8C1—N1—H1A108 (3)
C2—C3—C4121.5 (3)C1—N1—H1B112 (2)
C2—C3—Br1120.4 (2)H1A—N1—H1B107 (3)
C4—C3—Br1118.1 (2)C1—N1—H1C114 (2)
C5—C4—C3118.5 (3)H1A—N1—H1C104 (4)
C5—C4—H4120.8H1B—N1—H1C111 (3)
C3—C4—H4120.8O2'—N2—O3111.6 (16)
C6—C5—C4121.0 (3)O3—N2—O2122.5 (6)
C6—C5—H5119.5O2'—N2—O3'123.8 (14)
C4—C5—H5119.5O2—N2—O3'117.4 (10)
C5—C6—C1119.0 (3)O2'—N2—C8121.9 (12)
C5—C6—H6120.5O3—N2—C8119.0 (4)
C1—C6—H6120.5O2—N2—C8118.5 (5)
O1—C7—C8125.7 (3)O3'—N2—C8114.2 (12)
O1—C7—C12122.5 (3)O4—N3—O5123.5 (3)
C8—C7—C12111.8 (3)O4—N3—C10118.4 (3)
C9—C8—C7124.2 (3)O5—N3—C10118.1 (3)
C9—C8—N2115.3 (3)O6'—N4—O7114.7 (18)
C7—C8—N2120.5 (3)O7—N4—O6124.7 (6)
C8—C9—C10119.1 (3)O6'—N4—O7'119.8 (15)
C8—C9—H9120.5O6—N4—O7'113 (2)
C10—C9—H9120.5O6'—N4—C12120.1 (15)
C11—C10—C9121.1 (3)O7—N4—C12118.3 (4)
C11—C10—N3120.0 (3)O6—N4—C12117.0 (6)
C9—C10—N3118.9 (3)O7'—N4—C12119.6 (11)
C12—C11—C10118.5 (3)C7—O1—H1A123.4 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1C···O7i0.86 (1)2.50 (3)2.966 (12)115 (3)
N1—H1C···O1i0.86 (1)1.93 (1)2.775 (4)166 (3)
N1—H1A···O10.86 (1)1.96 (2)2.766 (4)157 (3)
N1—H1B···O6ii0.86 (1)2.28 (2)3.047 (12)148 (3)
C11—H11···O5iii0.932.453.296 (4)152
C4—H4···O3iv0.932.573.273 (7)133

Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y+2, −z; (iii) −x+3, −y+1, −z; (iv) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2949).

References

  • Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Harrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, o3277.
  • Pascard, C., Riche, C., Cesario, M., Kotzyba-Hibert, F. & Lehn, J. M. (1982). Chem. Commun. pp. 557–558.
  • Pearson, W. H., Kropf, J. E., Choy, A. L., Lee, I. Y. & Kampf, J. W. (2007). J. Org. Chem. 72, 4135–4148. [PubMed]
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, Q. R., Li, Z., Yang, H. Y., Li, F., Ding, Z. B. & Tao, F. G. (2003). Synthesis, pp. 1231–1235.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography