PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1666.
Published online 2009 November 25. doi:  10.1107/S1600536809049599
PMCID: PMC2971792

Tetra­aqua­bis(pyridine-κN)cobalt(II) bis­[4-amino-N-(6-chloro­pyridazin-3-yl)benzene­sulfonamidate]

Abstract

The structure of the title compound, [Co(C5H5N)2(H2O)4](C10H8ClN4O2S)2, consists of a discrete tetra­aqua­bis(pyridine-κN)cobalt(II) cation and two 4-amino-N-(6-chloro­pyridazin-3-yl)benzene­sulfonamidate anions. In the cation, the CoII ion sits on an inversion centre and is octa­hedrally coordinated by two pyridine N atoms and four O atoms. A two-dimensional network parallel to (010) is formed via inter­molecular O—H(...)O, O—H(...)N, N—H(...)N and N—H(...)O hydrogen bonds.

Related literature

For the structure of sulfachloro­pyridazine, see: Tan et al. (2005 [triangle]). For a sulfachloro­pyridazine–metal complex, see: Fogg et al. (1995 [triangle]). For an aqua­pyridine–cobalt(II) complex, see: Clegg et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1666-scheme1.jpg

Experimental

Crystal data

  • [Co(C5H5N)2(H2O)4](C10H8ClN4O2S)2
  • M r = 856.62
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1666-efi1.jpg
  • a = 8.5897 (12) Å
  • b = 25.807 (3) Å
  • c = 8.5338 (12) Å
  • β = 101.694 (3)°
  • V = 1852.5 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.78 mm−1
  • T = 193 K
  • 0.21 × 0.15 × 0.12 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (REQAB; Jacobson, 1998 [triangle]) T min = 0.853, T max = 0.912
  • 20359 measured reflections
  • 4226 independent reflections
  • 3331 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.108
  • S = 1.14
  • 4226 reflections
  • 258 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.66 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: CrystalClear (Rigaku, 1999 [triangle]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2000 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049599/pk2211sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049599/pk2211Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (No. 20861002), the 973 Plan of China (2009CB526503) the Natural Science Foundation of Guangxi, China (Nos. 0991003, 0991012Z) and the Open Foundation of the Key Laboratory for the Chemistry and Molecular Engin­eering of Medicinal Resources (Ministry of Education of China) for financial support.

supplementary crystallographic information

Comment

Sulfachloropyridazine [4-amino-N-(6-chloro-3-pyridazinyl)-benzensulfonamide], is a synthetic sulfanilamide antibacterial drug whose crystal structure is known (Tan et al. 2005). However, as far as we are aware, no crystal structure of a metal complex containing sulfachloropyridazine has been published, although the electrochemistry of its copper(I) complex has been described by Fogg et al. (1995). The compound consists of a [Co(H2O)4(py)2]2+ cation and two sulfacholoropyridazine anions. Similar to tetraaquabis(pyridine-κN)cobalt(II) diacetate (Clegg et al., 2006), the coordination geometry for the CoII cation (Fig. 1) is close to an ideal octahedron (N1—Co1—N1#1 180.000 (1)°, O1—Co1—O2 92.37 (9)°, O1—Co1—O2#1 87.63 (9)°, #1: -x + 2,-y + 1,-z + 1), with the O atoms of the coordinated water molecules occupying the equatorial positions and with the axial sites occupied by coordinated pyridine ligands. The sulfachloropyridazine is depronated at sulfamide N2 to generate anions, whose geometric parameters are comparable to sulfachloropyridazine (Tan et al., 2005). A two-dimensional network is formed via intermolecular hydrogen bonds of type O—H···O, O—H···N and N—H···O (Table 1).

Experimental

Samples of sulfachloropyridazine (0.2 mmol) and Co(Ac)2.4H2O (0.1 mmol) were placed in a thick-walled Pyrex tube (ca 20 cm long). After addition of ethanol (2.2 ml), H2O (0.2 ml) and pyridine (0.1 ml), the tube was frozen with liquid nitrogen, evacuated under vacuum and sealed with a torch. The tube was heated at 80°C for 3 days and then was slowly cooled down to room temperature, and orange-yellow block-shaped crystals were obtained. Yield: 80%.

Refinement

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2Ueq(C) (C—H = 0.95 Å). The H atoms attached to amino N were placed in the calculated positions, with N—H distance of 0.88 Å. The Uiso(H) values were constrained to be 1.2Ueq of the carrier atom for amino H atom. H atom attached to O was located in an electron-density difference map and refined isotropically.

Figures

Fig. 1.
The molecular structure showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A packing diagram of title compound, viewing down the [100] direction. Hydrogen bonds are shown as dashed lines.

Crystal data

[Co(C5H5N)2(H2O)4](C10H8ClN4O2S)2F(000) = 882
Mr = 856.62Dx = 1.536 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 6394 reflections
a = 8.5897 (12) Åθ = 3.1–27.5°
b = 25.807 (3) ŵ = 0.78 mm1
c = 8.5338 (12) ÅT = 193 K
β = 101.694 (3)°Block, orange-yellow
V = 1852.5 (4) Å30.21 × 0.15 × 0.12 mm
Z = 2

Data collection

Rigaku Mercury CCD diffractometer4226 independent reflections
Radiation source: fine-focus sealed tube3331 reflections with I > 2σ(I)
graphiteRint = 0.050
Detector resolution: 7.31 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = −11→9
Absorption correction: multi-scan (REQAB; Jacobson, 1998)k = −32→33
Tmin = 0.853, Tmax = 0.912l = −10→11
20359 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.14w = 1/[σ2(Fo2) + (0.0291P)2 + 1.7941P] where P = (Fo2 + 2Fc2)/3
4226 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.66 e Å3
1 restraintΔρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co11.00000.50000.50000.02572 (15)
Cl10.07781 (10)0.20506 (3)0.22874 (12)0.0489 (2)
S10.54834 (8)0.39936 (3)0.61366 (9)0.02737 (18)
O10.9392 (3)0.42160 (8)0.4313 (3)0.0348 (5)
O20.7795 (2)0.51495 (9)0.5400 (3)0.0337 (5)
O30.6620 (2)0.37878 (8)0.5233 (2)0.0330 (5)
O40.5622 (2)0.45443 (7)0.6462 (2)0.0331 (5)
N10.9177 (3)0.52499 (9)0.2536 (3)0.0315 (6)
N20.3692 (3)0.39029 (9)0.5297 (3)0.0299 (6)
N30.7205 (3)0.30830 (10)1.2615 (3)0.0394 (6)
H3A0.79670.28501.28270.047*
H3B0.67290.31901.33770.047*
N40.1620 (3)0.34401 (9)0.3915 (3)0.0309 (6)
N50.0921 (3)0.30070 (9)0.3205 (3)0.0323 (6)
C10.9858 (4)0.56332 (13)0.1875 (4)0.0405 (8)
H1C1.07050.58170.25300.049*
C20.9403 (4)0.57775 (15)0.0292 (4)0.0479 (9)
H2C0.99280.6054−0.01250.057*
C30.8187 (4)0.55177 (14)−0.0666 (4)0.0457 (9)
H30.78510.5609−0.17600.055*
C40.7458 (4)0.51210 (14)−0.0018 (4)0.0469 (9)
H40.66090.4933−0.06570.056*
C50.7977 (4)0.49995 (12)0.1575 (4)0.0378 (7)
H50.74630.47260.20150.045*
C60.5891 (3)0.36813 (10)0.8007 (3)0.0262 (6)
C70.7082 (4)0.33130 (12)0.8356 (4)0.0339 (7)
H70.76130.31990.75450.041*
C80.7499 (4)0.31125 (12)0.9877 (4)0.0355 (7)
H80.83070.28561.01010.043*
C90.6757 (3)0.32790 (11)1.1094 (3)0.0299 (6)
C100.5524 (4)0.36397 (12)1.0716 (4)0.0349 (7)
H100.49760.37501.15190.042*
C110.5097 (3)0.38357 (11)0.9191 (4)0.0334 (7)
H110.42520.40790.89460.040*
C120.3157 (3)0.34323 (11)0.4672 (3)0.0275 (6)
C130.1763 (3)0.25836 (11)0.3265 (4)0.0315 (7)
C140.3340 (4)0.25379 (11)0.4036 (4)0.0351 (7)
H140.38980.22190.40540.042*
C150.4049 (3)0.29672 (11)0.4761 (4)0.0328 (7)
H150.51240.29570.53210.039*
H1A0.859 (5)0.4089 (15)0.451 (5)0.060 (13)*
H1B1.005 (4)0.3990 (13)0.422 (4)0.038 (10)*
H2A0.717 (4)0.4932 (12)0.559 (5)0.070 (14)*
H2B0.734 (4)0.5420 (15)0.508 (5)0.058 (12)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0215 (3)0.0216 (3)0.0339 (3)0.0004 (2)0.0054 (2)−0.0016 (2)
Cl10.0384 (5)0.0396 (5)0.0696 (6)−0.0099 (3)0.0126 (4)−0.0209 (4)
S10.0224 (4)0.0263 (4)0.0332 (4)−0.0016 (3)0.0051 (3)0.0001 (3)
O10.0275 (12)0.0230 (11)0.0555 (15)−0.0012 (10)0.0120 (11)−0.0052 (10)
O20.0246 (11)0.0258 (12)0.0520 (14)0.0042 (9)0.0105 (10)0.0054 (10)
O30.0261 (11)0.0372 (11)0.0375 (12)−0.0036 (9)0.0105 (9)−0.0032 (9)
O40.0326 (11)0.0247 (10)0.0413 (12)−0.0052 (8)0.0061 (10)0.0010 (9)
N10.0284 (13)0.0287 (13)0.0373 (14)0.0042 (10)0.0063 (11)−0.0024 (11)
N20.0241 (13)0.0237 (12)0.0401 (14)0.0002 (9)0.0026 (11)0.0004 (11)
N30.0413 (16)0.0428 (15)0.0343 (14)0.0065 (12)0.0082 (12)0.0040 (12)
N40.0235 (12)0.0295 (13)0.0377 (14)0.0019 (10)0.0017 (11)−0.0023 (11)
N50.0261 (13)0.0296 (13)0.0399 (15)−0.0022 (10)0.0034 (11)−0.0043 (11)
C10.0365 (18)0.0438 (19)0.0411 (19)−0.0041 (14)0.0075 (15)0.0011 (15)
C20.049 (2)0.055 (2)0.041 (2)0.0012 (17)0.0155 (17)0.0091 (17)
C30.050 (2)0.056 (2)0.0301 (17)0.0174 (18)0.0056 (16)−0.0023 (16)
C40.046 (2)0.047 (2)0.042 (2)0.0085 (16)−0.0042 (17)−0.0120 (16)
C50.0353 (17)0.0331 (16)0.0422 (18)−0.0005 (13)0.0014 (15)−0.0027 (14)
C60.0198 (14)0.0253 (14)0.0334 (16)−0.0004 (11)0.0049 (12)0.0000 (12)
C70.0295 (16)0.0374 (17)0.0360 (17)0.0054 (13)0.0093 (14)−0.0033 (14)
C80.0316 (17)0.0368 (17)0.0379 (18)0.0097 (13)0.0063 (14)0.0014 (14)
C90.0294 (16)0.0269 (15)0.0325 (16)−0.0039 (12)0.0046 (13)−0.0014 (13)
C100.0341 (17)0.0353 (17)0.0390 (17)0.0016 (13)0.0159 (14)−0.0013 (14)
C110.0284 (16)0.0299 (16)0.0442 (18)0.0059 (12)0.0132 (14)−0.0003 (14)
C120.0245 (14)0.0260 (14)0.0318 (16)0.0021 (11)0.0053 (12)0.0017 (12)
C130.0270 (15)0.0292 (16)0.0394 (17)−0.0045 (12)0.0095 (13)−0.0053 (13)
C140.0293 (16)0.0250 (15)0.0505 (19)0.0052 (12)0.0070 (14)−0.0020 (14)
C150.0211 (15)0.0292 (15)0.0463 (18)0.0015 (11)0.0025 (13)0.0002 (14)

Geometric parameters (Å, °)

Co1—O2i2.028 (2)C1—C21.379 (5)
Co1—O22.028 (2)C1—H1C0.9500
Co1—O12.142 (2)C2—C31.365 (5)
Co1—O1i2.142 (2)C2—H2C0.9500
Co1—N1i2.176 (2)C3—C41.374 (5)
Co1—N12.176 (2)C3—H30.9500
Cl1—C131.737 (3)C4—C51.378 (5)
S1—O41.448 (2)C4—H40.9500
S1—O31.461 (2)C5—H50.9500
S1—N21.577 (2)C6—C71.384 (4)
S1—C61.759 (3)C6—C111.387 (4)
O1—H1A0.81 (4)C7—C81.376 (4)
O1—H1B0.83 (4)C7—H70.9500
O2—H2A0.82 (3)C8—C91.392 (4)
O2—H2B0.82 (4)C8—H80.9500
N1—C11.331 (4)C9—C101.398 (4)
N1—C51.346 (4)C10—C111.375 (4)
N2—C121.368 (3)C10—H100.9500
N3—C91.374 (4)C11—H110.9500
N3—H3A0.8800C12—C151.418 (4)
N3—H3B0.8800C13—C141.386 (4)
N4—C121.347 (4)C14—C151.352 (4)
N4—N51.352 (3)C14—H140.9500
N5—C131.306 (4)C15—H150.9500
O2i—Co1—O2180.0C1—C2—H2C120.5
O2i—Co1—O187.63 (9)C2—C3—C4118.8 (3)
O2—Co1—O192.37 (9)C2—C3—H3120.6
O2i—Co1—O1i92.37 (9)C4—C3—H3120.6
O2—Co1—O1i87.63 (9)C3—C4—C5119.0 (3)
O1—Co1—O1i180.00 (4)C3—C4—H4120.5
O2i—Co1—N1i88.56 (9)C5—C4—H4120.5
O2—Co1—N1i91.44 (9)N1—C5—C4123.1 (3)
O1—Co1—N1i89.87 (9)N1—C5—H5118.4
O1i—Co1—N1i90.13 (9)C4—C5—H5118.4
O2i—Co1—N191.44 (9)C7—C6—C11119.4 (3)
O2—Co1—N188.56 (9)C7—C6—S1120.8 (2)
O1—Co1—N190.13 (9)C11—C6—S1119.5 (2)
O1i—Co1—N189.87 (9)C8—C7—C6120.1 (3)
N1i—Co1—N1180.000 (1)C8—C7—H7120.0
O4—S1—O3114.83 (12)C6—C7—H7120.0
O4—S1—N2105.51 (12)C7—C8—C9121.1 (3)
O3—S1—N2113.63 (13)C7—C8—H8119.5
O4—S1—C6106.39 (13)C9—C8—H8119.5
O3—S1—C6106.34 (13)N3—C9—C8120.5 (3)
N2—S1—C6109.90 (13)N3—C9—C10121.1 (3)
Co1—O1—H1A120 (3)C8—C9—C10118.3 (3)
Co1—O1—H1B124 (2)C11—C10—C9120.5 (3)
H1A—O1—H1B111 (3)C11—C10—H10119.8
Co1—O2—H2A125 (3)C9—C10—H10119.8
Co1—O2—H2B120 (3)C10—C11—C6120.5 (3)
H2A—O2—H2B111 (4)C10—C11—H11119.7
C1—N1—C5116.5 (3)C6—C11—H11119.7
C1—N1—Co1123.0 (2)N4—C12—N2113.2 (2)
C5—N1—Co1120.4 (2)N4—C12—C15120.3 (3)
C12—N2—S1121.93 (19)N2—C12—C15126.5 (3)
C9—N3—H3A120.0N5—C13—C14124.8 (3)
C9—N3—H3B120.0N5—C13—Cl1115.6 (2)
H3A—N3—H3B120.0C14—C13—Cl1119.6 (2)
C12—N4—N5120.4 (2)C15—C14—C13117.0 (3)
C13—N5—N4118.8 (2)C15—C14—H14121.5
N1—C1—C2123.7 (3)C13—C14—H14121.5
N1—C1—H1C118.2C14—C15—C12118.7 (3)
C2—C1—H1C118.2C14—C15—H15120.6
C3—C2—C1119.0 (3)C12—C15—H15120.6
C3—C2—H2C120.5
O2i—Co1—N1—C1−57.6 (2)O3—S1—C6—C11173.7 (2)
O2—Co1—N1—C1122.4 (2)N2—S1—C6—C11−62.9 (3)
O1—Co1—N1—C1−145.2 (2)C11—C6—C7—C8−1.6 (4)
O1i—Co1—N1—C134.8 (2)S1—C6—C7—C8173.1 (2)
O2i—Co1—N1—C5119.1 (2)C6—C7—C8—C9−1.0 (5)
O2—Co1—N1—C5−60.9 (2)C7—C8—C9—N3−178.7 (3)
O1—Co1—N1—C531.5 (2)C7—C8—C9—C102.8 (5)
O1i—Co1—N1—C5−148.5 (2)N3—C9—C10—C11179.5 (3)
O4—S1—N2—C12173.4 (2)C8—C9—C10—C11−2.1 (4)
O3—S1—N2—C1246.8 (3)C9—C10—C11—C6−0.5 (5)
C6—S1—N2—C12−72.3 (3)C7—C6—C11—C102.3 (4)
C12—N4—N5—C13−0.2 (4)S1—C6—C11—C10−172.5 (2)
C5—N1—C1—C2−0.3 (5)N5—N4—C12—N2178.8 (2)
Co1—N1—C1—C2176.4 (3)N5—N4—C12—C15−1.3 (4)
N1—C1—C2—C30.1 (5)S1—N2—C12—N4−176.0 (2)
C1—C2—C3—C40.0 (5)S1—N2—C12—C154.2 (4)
C2—C3—C4—C50.1 (5)N4—N5—C13—C141.2 (5)
C1—N1—C5—C40.4 (5)N4—N5—C13—Cl1−178.8 (2)
Co1—N1—C5—C4−176.4 (2)N5—C13—C14—C15−0.7 (5)
C3—C4—C5—N1−0.3 (5)Cl1—C13—C14—C15179.3 (2)
O4—S1—C6—C7−123.9 (2)C13—C14—C15—C12−0.9 (5)
O3—S1—C6—C7−1.0 (3)N4—C12—C15—C141.8 (5)
N2—S1—C6—C7122.4 (2)N2—C12—C15—C14−178.3 (3)
O4—S1—C6—C1150.8 (3)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···N5ii0.882.523.135 (4)127
N3—H3B···O3iii0.882.233.001 (3)147
O1—H1A···O30.81 (4)2.07 (4)2.874 (3)174 (4)
O1—H1B···N4iv0.83 (4)2.01 (4)2.838 (3)178 (3)
O2—H2A···O40.82 (3)1.93 (4)2.726 (3)165 (4)
O2—H2B···N2v0.82 (4)1.96 (4)2.768 (3)170 (4)
O2—H2B···O4v0.82 (4)2.62 (4)3.142 (3)123 (3)

Symmetry codes: (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x+1, y, z; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2211).

References

  • Clegg, J. K., Hayter, M. J., Jolliffe, K. A. & Lindoy, L. F. (2006). Acta Cryst. E62, m873–m874.
  • Fogg, A. G., Yusoff, A. R. H. M. & Ahmad, R. (1995). Anal. Proc. 32, 337–340.
  • Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC and Rigaku (2000). CrystalStrucutre. Rigaku/MSC, The Woodands, Texas, USA, and Rigaku Coporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tan, Y.-S., Chen, Z.-F., Liang, H. & Zhang, Y. (2005). Acta Cryst. E61, o1842–o1844.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography