PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1592–m1593.
Published online 2009 November 18. doi:  10.1107/S1600536809047904
PMCID: PMC2971776

(Dimethyl sulfoxide-κO)di­phenyl­(3-thioxo-3H-1,2-dithiole-4,5-dithiol­ato-κ2 S 4,S 5)tin(IV)

Abstract

The Sn atom in the title compound, [Sn(C6H5)2(C3S5)(C2H6OS)], exists within a distorted trigonal-bipyramidal geometry defined by two S atoms of the 1,2-dithiole-3-thione-4,5-dithiol­ate dianion, two ipso-C atoms from the phenyl groups, and the O atom of the dimethyl sulfoxide mol­ecule. In this description, one of the S atoms and the O occupy axial positions. In the crystal, centrosymmetrically related mol­ecules associate via pairs of C—H(...)S contacts, forming dimeric aggregates.

Related literature

For background to the synthesis of dmt compounds, see: Steimecke et al. (1982 [triangle]). For related crystal structures, see: Aupers et al. (1998 [triangle]); Khan et al. (1998 [triangle]); Chohan et al. (1999 [triangle]); Bordinhão et al. (2006 [triangle], 2008 [triangle]); Comerlato et al. (2008 [triangle]). For additional analysis of geometry, see: Addison et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1592-scheme1.jpg

Experimental

Crystal data

  • [Sn(C6H5)2(C3S5)(C2H6OS)]
  • M r = 547.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1592-efi1.jpg
  • a = 11.1420 (5) Å
  • b = 15.7237 (6) Å
  • c = 11.9646 (6) Å
  • β = 96.892 (2)°
  • V = 2080.97 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.83 mm−1
  • T = 120 K
  • 0.24 × 0.16 × 0.10 mm

Data collection

  • Bruker–Nonius 95mm CCD camera on κ-goniostat diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.536, T max = 0.746
  • 22729 measured reflections
  • 4770 independent reflections
  • 3906 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.088
  • S = 1.06
  • 4770 reflections
  • 228 parameters
  • H-atom parameters constrained
  • Δρmax = 0.85 e Å−3
  • Δρmin = −1.26 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047904/hb5220sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047904/hb5220Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

While several structures of (1,3-dithiole-2-thione-4,5-dithiolato)tin, [Sn-dmit], and (1,3-dithiole-2-one-4,5-dithiolato)tin [Sn-dmio] complexes have been reported (e.g., Comerlato et al., 2008), similar (1,2-dithiole-3-thione-4,5-dithiolato)tin complexes have been essentially neglected, with only one systematic study known (Bordinhão et al., 2006; Bordinhão et al., 2008); see Fig. 1 for chemical structures of dmit, dmio and dmt. The poor solubility of 1,2-dithiole-3-thione-4,5-dithiolato (dmt) complexes has been put forward as a major cause for the limited number of their reported crystal structures. Attempts to obtain good crystals of Ph2Sn(dmt), prepared from reaction of Na2(dmt) and Ph2SnCl2 in MeOH solution, failed as only amorphous material was obtained. However, crystallization of Ph2Sn(dmt) from a DMSO/MeOH solution produced crystals of the DMSO solvate, (I), suitable for the X-Ray study reported herein.

As compounds, R2Sn(dmit) and R2Sn(dmio), having non-functionalized alkyl or aryl R groups (e.g., R = Me, Et, Bu or Ph), are aggregated in both the solid–state and in non-coordinating solvents as a consequence of intermolecular Sn···S interactions., it is assumed that the R2Sn(dmt) analogues are similarly aggregated. The formation of adducts such as [Ph2Sn(dmt)(dmso)] will generally provide coordinatively saturated tin centres and hence result in appreciably more soluble species having essentially non-interacting cations and anions. Structures of ionic species, [Q][R2Sn(dmit)X] and [Q][R2Sn(dmio)X] [Q+ = onium cation, X = halide or pseudohalide], with 5-coordinate tin have also been determined (Chohan et al., 1999; Khan et al., 1998; Aupers et al., 1998).

The Sn atom in (1) is five-coordinate, existing within a C2OS2 donor set defined by a chelating dmt ligand, two ipso-C atoms and the O atom derived from the DMSO molecule, Fig. 2. The coordination geometry is based on a trigonal bipyramid with the S2–Sn–O1 axial angle being 166.52 (6) °. As expected, the Sn–S1equatorial distance of 2.4357 (9) Å is shorter than the Sn–S2axial distance of 2.5582 (9) Å. The coordination geometry is distorted towards trigonal bipyramidal (TP). This is quantified by the value of τ = 0.72, which compares with the ideal values of 1.0 and 0.0 for TP and square pyramidal, respectively (Addison et al., 1984).

The most prominent intermolecular interaction connecting molecules is of the type C–H···S and these occur between centrosymmetric pairs to form loosely associated dimers, Table 1 and Fig. 3.

Experimental

To a stirred suspension of 4,5-bis(benzoylthio)-1,2-dithiole-3-thione (Steimecke et al., 1982) (410 mg, 1 mmol) in methanol (10 ml), under argon, was added a sodium methoxide solution prepared from sodium (150 mg, 6.75 mmol) and methanol (10 ml). To the resulting purple solution of Na2dmt was added with stirring a methanolic solution of Ph2SnCl2 (345 mg, 1 mmol). The reaction mixture was stirred for 1 h, rotary evaporated and the residue washed well with water. The solid residue (535 mg) was dissolved in a mixture of DMSO and MeOH (ca v:v 3:1) and left to slowly recrystallize to give (I); m.pt. 428–431 K (dec.) IR (KBr, cm-1): 1061 (ν C—S), 950, 941 (ν S—O), 910, 827, 720 (ν C=S).

Refinement

All H atoms were geometrically placed (C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 0.85 and 1.26 e Å-3, respectively, were located 1.81 Å and 0.82 Å from the S1 and Sn atoms, respectively.

Figures

Fig. 1.
Preparation of the title compound.
Fig. 2.
Molecular structure (I) showing displacement ellipsoids at the 50% probability level.
Fig. 3.
Supramolecular dimer in (I) mediated by C–H···S contacts (orange dashed lines). Colour code: Sn, orange; S, yellow;O, red; C, grey; and H, green.

Crystal data

[Sn(C6H5)2(C3S5)(C2H6OS)]F(000) = 1088
Mr = 547.35Dx = 1.747 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 44319 reflections
a = 11.1420 (5) Åθ = 2.9–27.5°
b = 15.7237 (6) ŵ = 1.83 mm1
c = 11.9646 (6) ÅT = 120 K
β = 96.892 (2)°Block, yellow
V = 2080.97 (16) Å30.24 × 0.16 × 0.10 mm
Z = 4

Data collection

Bruker–Nonius 95mm CCD camera on κ-goniostat diffractometer4770 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3906 reflections with I > 2σ(I)
graphiteRint = 0.057
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
[var phi] and ω scansh = −14→14
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −20→19
Tmin = 0.536, Tmax = 0.746l = −15→15
22729 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0404P)2 + 1.7706P] where P = (Fo2 + 2Fc2)/3
4770 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = −1.26 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn0.823308 (19)0.079364 (13)0.201486 (19)0.01886 (9)
S10.64254 (8)0.07006 (5)0.29688 (7)0.02196 (18)
S20.68225 (8)0.10256 (6)0.01905 (8)0.0263 (2)
S30.42347 (8)0.12813 (5)−0.02069 (8)0.0266 (2)
S40.30214 (8)0.12492 (6)0.09713 (8)0.0302 (2)
S50.35612 (8)0.08574 (6)0.33685 (9)0.0301 (2)
S60.89763 (8)0.13614 (5)0.46902 (8)0.0264 (2)
O10.9096 (2)0.06287 (13)0.38570 (19)0.0218 (5)
C10.5279 (3)0.09377 (19)0.1865 (3)0.0210 (7)
C20.5481 (3)0.1063 (2)0.0763 (3)0.0226 (7)
C30.4068 (3)0.0995 (2)0.2126 (3)0.0249 (7)
C40.8953 (3)−0.0427 (2)0.1706 (3)0.0199 (7)
C51.0061 (3)−0.0547 (2)0.1308 (3)0.0291 (8)
H51.0562−0.00730.12000.035*
C61.0440 (3)−0.1366 (2)0.1067 (3)0.0349 (9)
H61.1200−0.14480.07980.042*
C70.9712 (3)−0.2061 (2)0.1217 (3)0.0327 (9)
H70.9965−0.26160.10370.039*
C80.8622 (3)−0.1945 (2)0.1626 (3)0.0277 (8)
H80.8126−0.24230.17350.033*
C90.8241 (3)−0.1133 (2)0.1883 (3)0.0216 (7)
H90.7495−0.10590.21790.026*
C100.9274 (3)0.1927 (2)0.1953 (3)0.0212 (7)
C111.0477 (3)0.1947 (2)0.2438 (3)0.0260 (7)
H111.08420.14430.27580.031*
C121.1145 (3)0.2691 (2)0.2459 (3)0.0331 (9)
H121.19630.26980.27920.040*
C131.0608 (4)0.3427 (2)0.1990 (4)0.0376 (10)
H131.10550.39430.20230.045*
C140.9438 (4)0.3415 (2)0.1480 (3)0.0350 (9)
H140.90850.39190.11470.042*
C150.8763 (3)0.2666 (2)0.1450 (3)0.0270 (8)
H150.79560.26580.10870.032*
C161.0469 (3)0.1532 (2)0.5361 (3)0.0351 (9)
H16A1.08230.09870.56280.053*
H16B1.04430.19170.60020.053*
H16C1.09620.17850.48240.053*
C170.8353 (4)0.0869 (3)0.5831 (4)0.0423 (10)
H17A0.75330.06700.55740.064*
H17B0.83260.12810.64410.064*
H17C0.88580.03840.61050.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn0.01908 (13)0.01369 (12)0.02314 (14)0.00039 (8)−0.00013 (9)0.00187 (8)
S10.0222 (4)0.0193 (4)0.0241 (5)0.0009 (3)0.0015 (3)0.0028 (3)
S20.0210 (4)0.0330 (5)0.0243 (5)0.0008 (3)0.0000 (4)0.0059 (4)
S30.0213 (4)0.0276 (4)0.0293 (5)0.0011 (3)−0.0039 (4)0.0000 (4)
S40.0194 (4)0.0347 (5)0.0356 (5)0.0019 (4)−0.0007 (4)−0.0036 (4)
S50.0259 (5)0.0298 (5)0.0360 (6)−0.0008 (3)0.0096 (4)−0.0007 (4)
S60.0326 (5)0.0183 (4)0.0263 (5)0.0038 (3)−0.0041 (4)−0.0022 (3)
O10.0270 (13)0.0153 (11)0.0224 (13)0.0015 (9)0.0004 (10)−0.0005 (9)
C10.0199 (16)0.0128 (15)0.0292 (19)0.0002 (12)−0.0021 (14)−0.0015 (13)
C20.0222 (17)0.0168 (15)0.0276 (19)0.0021 (13)−0.0011 (14)−0.0005 (13)
C30.0210 (17)0.0190 (16)0.034 (2)−0.0001 (13)−0.0012 (15)−0.0006 (14)
C40.0210 (16)0.0172 (15)0.0203 (17)0.0019 (13)−0.0024 (13)0.0010 (13)
C50.0271 (19)0.0246 (17)0.036 (2)0.0000 (14)0.0059 (16)0.0053 (16)
C60.031 (2)0.041 (2)0.035 (2)0.0111 (17)0.0121 (17)0.0045 (17)
C70.044 (2)0.0218 (17)0.032 (2)0.0098 (16)0.0041 (17)−0.0024 (15)
C80.039 (2)0.0174 (16)0.0254 (19)−0.0013 (14)0.0002 (16)0.0044 (14)
C90.0221 (17)0.0195 (16)0.0222 (18)−0.0016 (13)−0.0013 (14)0.0008 (13)
C100.0257 (17)0.0170 (15)0.0216 (18)−0.0003 (13)0.0063 (14)−0.0002 (13)
C110.0243 (17)0.0233 (17)0.030 (2)−0.0018 (14)0.0027 (15)−0.0018 (14)
C120.029 (2)0.034 (2)0.038 (2)−0.0086 (16)0.0099 (17)−0.0065 (17)
C130.049 (3)0.0236 (18)0.045 (2)−0.0145 (17)0.026 (2)−0.0081 (17)
C140.050 (2)0.0178 (17)0.041 (2)0.0041 (16)0.021 (2)0.0026 (16)
C150.0300 (19)0.0197 (16)0.032 (2)0.0039 (14)0.0051 (15)0.0014 (14)
C160.035 (2)0.033 (2)0.034 (2)−0.0047 (16)−0.0112 (17)0.0022 (17)
C170.049 (3)0.049 (3)0.031 (2)−0.0049 (19)0.012 (2)−0.0018 (18)

Geometric parameters (Å, °)

Sn—C42.130 (3)C7—C81.375 (5)
Sn—C102.133 (3)C7—H70.9500
Sn—O12.311 (2)C8—C91.392 (5)
Sn—S12.4357 (9)C8—H80.9500
Sn—S22.5582 (9)C9—H90.9500
S1—C11.764 (3)C10—C111.396 (5)
S2—C21.718 (3)C10—C151.398 (5)
S3—C21.734 (3)C11—C121.386 (5)
S3—S42.0674 (13)C11—H110.9500
S4—C31.744 (4)C12—C131.390 (6)
S5—C31.667 (4)C12—H120.9500
S6—O11.540 (2)C13—C141.372 (6)
S6—C161.778 (4)C13—H130.9500
S6—C171.781 (4)C14—C151.395 (5)
C1—C21.379 (5)C14—H140.9500
C1—C31.423 (5)C15—H150.9500
C4—C51.388 (5)C16—H16A0.9800
C4—C91.395 (5)C16—H16B0.9800
C5—C61.396 (5)C16—H16C0.9800
C5—H50.9500C17—H17A0.9800
C6—C71.384 (5)C17—H17B0.9800
C6—H60.9500C17—H17C0.9800
C4—Sn—C10121.97 (12)C6—C7—H7120.0
C4—Sn—O186.68 (10)C7—C8—C9120.3 (3)
C10—Sn—O187.79 (10)C7—C8—H8119.8
C4—Sn—S1112.16 (9)C9—C8—H8119.8
C10—Sn—S1123.38 (9)C8—C9—C4120.2 (3)
O1—Sn—S179.58 (6)C8—C9—H9119.9
C4—Sn—S2100.73 (9)C4—C9—H9119.9
C10—Sn—S297.58 (9)C11—C10—C15118.8 (3)
O1—Sn—S2166.52 (6)C11—C10—Sn120.2 (2)
S1—Sn—S287.16 (3)C15—C10—Sn121.0 (2)
C1—S1—Sn101.66 (12)C12—C11—C10120.9 (3)
C2—S2—Sn98.03 (12)C12—C11—H11119.6
C2—S3—S494.35 (12)C10—C11—H11119.6
C3—S4—S396.65 (12)C11—C12—C13119.5 (4)
O1—S6—C16104.84 (17)C11—C12—H12120.3
O1—S6—C17104.05 (17)C13—C12—H12120.3
C16—S6—C1798.6 (2)C14—C13—C12120.5 (3)
S6—O1—Sn118.36 (12)C14—C13—H13119.7
C2—C1—C3117.9 (3)C12—C13—H13119.7
C2—C1—S1124.0 (3)C13—C14—C15120.3 (3)
C3—C1—S1118.0 (3)C13—C14—H14119.9
C1—C2—S2128.8 (3)C15—C14—H14119.9
C1—C2—S3117.3 (3)C14—C15—C10120.0 (3)
S2—C2—S3113.9 (2)C14—C15—H15120.0
C1—C3—S5128.2 (3)C10—C15—H15120.0
C1—C3—S4113.7 (3)S6—C16—H16A109.5
S5—C3—S4118.1 (2)S6—C16—H16B109.5
C5—C4—C9119.3 (3)H16A—C16—H16B109.5
C5—C4—Sn123.5 (2)S6—C16—H16C109.5
C9—C4—Sn117.2 (2)H16A—C16—H16C109.5
C4—C5—C6120.0 (3)H16B—C16—H16C109.5
C4—C5—H5120.0S6—C17—H17A109.5
C6—C5—H5120.0S6—C17—H17B109.5
C7—C6—C5120.3 (3)H17A—C17—H17B109.5
C7—C6—H6119.9S6—C17—H17C109.5
C5—C6—H6119.9H17A—C17—H17C109.5
C8—C7—C6119.9 (3)H17B—C17—H17C109.5
C8—C7—H7120.0
C4—Sn—S1—C1−105.26 (14)O1—Sn—C4—C5−94.0 (3)
C10—Sn—S1—C192.39 (15)S1—Sn—C4—C5−171.4 (3)
O1—Sn—S1—C1172.71 (12)S2—Sn—C4—C597.3 (3)
S2—Sn—S1—C1−4.83 (10)C10—Sn—C4—C9173.5 (2)
C4—Sn—S2—C2116.74 (14)O1—Sn—C4—C988.2 (3)
C10—Sn—S2—C2−118.59 (14)S1—Sn—C4—C910.8 (3)
O1—Sn—S2—C2−5.7 (3)S2—Sn—C4—C9−80.5 (2)
S1—Sn—S2—C24.72 (11)C9—C4—C5—C61.4 (5)
C2—S3—S4—C3−1.58 (16)Sn—C4—C5—C6−176.4 (3)
C16—S6—O1—Sn−130.43 (17)C4—C5—C6—C70.3 (6)
C17—S6—O1—Sn126.56 (19)C5—C6—C7—C8−1.3 (6)
C4—Sn—O1—S6177.97 (16)C6—C7—C8—C90.5 (6)
C10—Sn—O1—S655.76 (16)C7—C8—C9—C41.2 (5)
S1—Sn—O1—S6−68.78 (13)C5—C4—C9—C8−2.2 (5)
S2—Sn—O1—S6−58.2 (3)Sn—C4—C9—C8175.8 (3)
Sn—S1—C1—C24.4 (3)C4—Sn—C10—C11−42.9 (3)
Sn—S1—C1—C3−176.2 (2)O1—Sn—C10—C1141.8 (3)
C3—C1—C2—S2−179.4 (3)S1—Sn—C10—C11117.8 (2)
S1—C1—C2—S20.0 (5)S2—Sn—C10—C11−150.6 (3)
C3—C1—C2—S30.1 (4)C4—Sn—C10—C15138.4 (3)
S1—C1—C2—S3179.45 (17)O1—Sn—C10—C15−136.9 (3)
Sn—S2—C2—C1−4.1 (3)S1—Sn—C10—C15−60.9 (3)
Sn—S2—C2—S3176.36 (15)S2—Sn—C10—C1530.7 (3)
S4—S3—C2—C11.1 (3)C15—C10—C11—C122.3 (5)
S4—S3—C2—S2−179.35 (16)Sn—C10—C11—C12−176.4 (3)
C2—C1—C3—S5178.8 (3)C10—C11—C12—C13−0.1 (6)
S1—C1—C3—S5−0.6 (4)C11—C12—C13—C14−1.8 (6)
C2—C1—C3—S4−1.6 (4)C12—C13—C14—C151.4 (6)
S1—C1—C3—S4179.03 (17)C13—C14—C15—C100.9 (5)
S3—S4—C3—C12.0 (2)C11—C10—C15—C14−2.7 (5)
S3—S4—C3—S5−178.38 (18)Sn—C10—C15—C14176.0 (3)
C10—Sn—C4—C5−8.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···S2i0.952.713.599 (4)157

Symmetry codes: (i) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5220).

References

  • Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Aupers, J. H., Chohan, Z. H., Cox, P. J., Doidge-Harrison, S. M. S. V., Howie, R. A., Khan, A., Spencer, G. M. & Wardell, J. L. (1998). Polyhedron, 17, 4475–4486.
  • Bordinhão, J., Comerlato, N. M., de Castro Cortás, L., Ferreira, G. B., Howie, R. A. & Wardell, J. L. (2008). J. Organomet. Chem. 693, 763–768.
  • Bordinhão, J., Comerlato, N. M., Ferreira, G. B., Howie, R. A., da Silva, C. X. A. & Wardell, J. L. (2006). J. Organomet. Chem. 691, 1598–1605.
  • Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Chohan, Z. H., Howie, R. A. & Wardell, J. L. (1999). J. Organomet. Chem. 577, 140–149.
  • Comerlato, N. M., Ferreira, G. B., Howie, R. A., Silva, C. X. A. & Wardell, J. L. (2008). J. Organomet. Chem. 693, 2424–2430.
  • Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  • Khan, A., Low, J. N., Wardell, J. L. & Ferguson, G. (1998). Acta Cryst. C54, 1399–1401.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2007). SADABS. Version 2007/2. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steimecke, G., Sieler, H.-J., Kirmse, R., Dietzch, W. & Hoyer, E. (1982). Phosphorus Sulfur, 12, 237–247.
  • Westrip, S. P. (2009). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography