PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3084.
Published online 2009 November 14. doi:  10.1107/S1600536809047278
PMCID: PMC2971775

(2E,5E)-2,5-Difurfurylidenecyclo­penta­none

Abstract

In the title mol­ecule, C15H12O3, the three five-membered rings are nearly coplanar: the dihedral angles between the cyclopentanone ring and the furan rings are 3.5 (2) and 9.7 (2)°, and the two furan rings form a dihedral angle of 7.2 (2)°. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds help to consolidate the crystal packing.

Related literature

For background to the use of bis­(aryl­methyl­idene)cyclo­alkanones as building blocks for the synthesis of biologically active heterocycles, see Guilford et al. (1999 [triangle]). For related structures, see: Du et al. (2007 [triangle]); Sun & Cui (2007 [triangle]); Wei et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3084-scheme1.jpg

Experimental

Crystal data

  • C15H12O3
  • M r = 240.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3084-efi1.jpg
  • a = 5.9280 (9) Å
  • b = 8.5031 (13) Å
  • c = 23.280 (3) Å
  • β = 92.139 (3)°
  • V = 1172.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 K
  • 0.12 × 0.08 × 0.05 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.989, T max = 0.995
  • 5793 measured reflections
  • 2076 independent reflections
  • 1083 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.129
  • S = 0.99
  • 2076 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047278/cv2656sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047278/cv2656Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Postgraduate Foundation of Taishan University (grant No. Y07–2-14).

supplementary crystallographic information

Comment

Bis(arylmethylidene)cycloalkanones are widely used as building blocks for the synthesis of biologically active heterocycles (Guilford et al., 1999). In the present paper, we describe the crystal stucture of the title compound.

The title molecule adopts an E-configuration about the central olefinic bonds (Fig.1). The cyclopentanone ring and the furan rings are alomst coplanar. All bond lengths and angles are normal and correspond to those observed in the related substituted cyclopentanone and cyclohexanone analogues reported by Du et al. (2007), Sun & Cui (2007) and Wei et al. (2008). The crystal packing exhibits weak intermolecular C—H···O hydrogen bonds (Table 1).

Experimental

Tetrabutylammonium bromide (0.3 mmol) and NaOH (5 mmol) were dissolved in the mixture of water (5 ml) and ethanol (2 ml). The solution was stirred at room temperature for 10 min,followed by added dropwise the mixture of furaldehyde (10 mmol) and cyclopentanone (5 mmol).The mixture was stirred at the temperature of 303 K for 2 h. When the reaction was complete, the residue was filtered. The precipitate was washed by water and recrystallized from ethyl acetate. Analysis calculated for C15H12O3: C 75.00,H 5.00%; found: C 74.90,H 5.03%. Crystals of (I) suitable for single-crystal X-ray analysis were selected after recrystallization.

Refinement

All H-atoms were initially located in a difference Fourier map and were placed in geometrically idealized positions, with C—H = 0.93 - 0.97 Å, and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C15H12O3F(000) = 504
Mr = 240.25Dx = 1.361 Mg m3
Monoclinic, P21/cMelting point: 405 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.9280 (9) ÅCell parameters from 461 reflections
b = 8.5031 (13) Åθ = 3.0–18.7°
c = 23.280 (3) ŵ = 0.10 mm1
β = 92.139 (3)°T = 298 K
V = 1172.6 (3) Å3Block, yellow
Z = 40.12 × 0.08 × 0.05 mm

Data collection

Bruker SMART CCD area-detector diffractometer2076 independent reflections
Radiation source: fine-focus sealed tube1083 reflections with I > 2σ(I)
graphiteRint = 0.059
[var phi] and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→7
Tmin = 0.989, Tmax = 0.995k = −10→9
5793 measured reflectionsl = −27→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.129w = 1/[σ2(Fo2) + (0.049P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2076 reflectionsΔρmax = 0.17 e Å3
164 parametersΔρmin = −0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.2374 (3)0.2225 (2)0.62045 (7)0.0606 (6)
O21.3568 (3)0.4626 (2)0.42876 (8)0.0648 (6)
O30.7570 (3)−0.1375 (2)0.73472 (8)0.0640 (6)
C11.0690 (5)0.1894 (3)0.58984 (11)0.0443 (7)
C21.0293 (4)0.2376 (3)0.52998 (10)0.0416 (7)
C30.8083 (4)0.1745 (3)0.50780 (10)0.0496 (7)
H3A0.82960.10480.47550.059*
H3B0.70910.25970.49540.059*
C40.7065 (4)0.0834 (3)0.55845 (10)0.0487 (7)
H4A0.56550.13110.56920.058*
H4B0.6780−0.02520.54780.058*
C50.8774 (4)0.0925 (3)0.60707 (11)0.0430 (7)
C61.1804 (4)0.3239 (3)0.50282 (11)0.0476 (7)
H61.30980.35080.52440.057*
C71.1698 (5)0.3802 (3)0.44512 (12)0.0459 (7)
C81.0169 (5)0.3795 (3)0.40086 (12)0.0569 (8)
H80.87550.33200.40040.068*
C91.1100 (6)0.4640 (3)0.35521 (12)0.0652 (9)
H91.04270.48310.31920.078*
C101.3128 (6)0.5103 (4)0.37419 (13)0.0704 (10)
H101.41220.56840.35260.084*
C110.8754 (4)0.0258 (3)0.65893 (11)0.0499 (7)
H111.00110.04480.68300.060*
C120.7047 (5)−0.0711 (3)0.68205 (11)0.0465 (7)
C130.4940 (5)−0.1134 (3)0.66577 (12)0.0579 (8)
H130.4170−0.08440.63190.069*
C140.4101 (5)−0.2101 (4)0.70957 (13)0.0657 (9)
H140.2682−0.25660.71010.079*
C150.5736 (5)−0.2212 (4)0.74968 (13)0.0642 (9)
H150.5640−0.27860.78350.077*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0480 (12)0.0831 (16)0.0497 (12)−0.0054 (11)−0.0089 (9)0.0018 (10)
O20.0632 (13)0.0725 (15)0.0587 (14)−0.0127 (11)0.0024 (10)0.0110 (11)
O30.0670 (14)0.0815 (16)0.0430 (12)−0.0039 (12)−0.0042 (10)0.0100 (10)
C10.0404 (16)0.0489 (18)0.0437 (17)0.0062 (14)0.0016 (13)−0.0033 (13)
C20.0419 (16)0.0414 (17)0.0413 (16)0.0049 (13)0.0006 (12)−0.0041 (12)
C30.0478 (17)0.0550 (19)0.0456 (17)0.0013 (14)−0.0021 (13)−0.0022 (13)
C40.0449 (17)0.0526 (18)0.0484 (17)−0.0014 (14)−0.0006 (13)−0.0019 (13)
C50.0422 (16)0.0451 (17)0.0417 (17)0.0039 (13)0.0022 (13)−0.0042 (13)
C60.0472 (17)0.0489 (19)0.0466 (17)0.0040 (14)−0.0018 (13)−0.0021 (13)
C70.0457 (17)0.0408 (17)0.0515 (18)−0.0017 (13)0.0048 (14)−0.0021 (13)
C80.059 (2)0.059 (2)0.0522 (19)−0.0027 (15)−0.0028 (16)−0.0025 (15)
C90.090 (3)0.062 (2)0.0430 (19)0.0013 (18)−0.0044 (17)0.0024 (16)
C100.094 (3)0.064 (2)0.054 (2)−0.0035 (19)0.0106 (19)0.0113 (17)
C110.0482 (17)0.058 (2)0.0435 (17)0.0025 (14)−0.0019 (13)−0.0027 (14)
C120.0539 (19)0.0477 (18)0.0377 (16)0.0054 (15)−0.0009 (13)0.0013 (13)
C130.058 (2)0.066 (2)0.0493 (18)−0.0032 (16)−0.0052 (15)0.0082 (15)
C140.061 (2)0.078 (2)0.058 (2)−0.0164 (17)0.0007 (17)0.0083 (17)
C150.072 (2)0.071 (2)0.050 (2)−0.0090 (19)0.0120 (17)0.0091 (16)

Geometric parameters (Å, °)

O1—C11.237 (3)C6—C71.425 (3)
O2—C101.350 (3)C6—H60.9300
O2—C71.377 (3)C7—C81.347 (3)
O3—C151.356 (3)C8—C91.412 (4)
O3—C121.375 (3)C8—H80.9300
C1—C21.463 (3)C9—C101.326 (4)
C1—C51.471 (3)C9—H90.9300
C2—C61.335 (3)C10—H100.9300
C2—C31.490 (3)C11—C121.426 (4)
C3—C41.552 (3)C11—H110.9300
C3—H3A0.9700C12—C131.341 (3)
C3—H3B0.9700C13—C141.415 (4)
C4—C51.493 (3)C13—H130.9300
C4—H4A0.9700C14—C151.324 (3)
C4—H4B0.9700C14—H140.9300
C5—C111.335 (3)C15—H150.9300
C10—O2—C7106.5 (2)C8—C7—C6136.4 (3)
C15—O3—C12106.8 (2)O2—C7—C6115.1 (2)
O1—C1—C2125.6 (3)C7—C8—C9107.6 (3)
O1—C1—C5125.8 (2)C7—C8—H8126.2
C2—C1—C5108.6 (2)C9—C8—H8126.2
C6—C2—C1121.2 (2)C10—C9—C8106.0 (3)
C6—C2—C3129.1 (2)C10—C9—H9127.0
C1—C2—C3109.7 (2)C8—C9—H9127.0
C2—C3—C4106.2 (2)C9—C10—O2111.4 (3)
C2—C3—H3A110.5C9—C10—H10124.3
C4—C3—H3A110.5O2—C10—H10124.3
C2—C3—H3B110.5C5—C11—C12128.1 (2)
C4—C3—H3B110.5C5—C11—H11115.9
H3A—C3—H3B108.7C12—C11—H11115.9
C5—C4—C3106.2 (2)C13—C12—O3108.6 (2)
C5—C4—H4A110.5C13—C12—C11135.6 (3)
C3—C4—H4A110.5O3—C12—C11115.7 (2)
C5—C4—H4B110.5C12—C13—C14107.5 (3)
C3—C4—H4B110.5C12—C13—H13126.2
H4A—C4—H4B108.7C14—C13—H13126.2
C11—C5—C1121.2 (2)C15—C14—C13106.4 (3)
C11—C5—C4129.4 (2)C15—C14—H14126.8
C1—C5—C4109.3 (2)C13—C14—H14126.8
C2—C6—C7128.6 (2)C14—C15—O3110.8 (3)
C2—C6—H6115.7C14—C15—H15124.6
C7—C6—H6115.7O3—C15—H15124.6
C8—C7—O2108.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.932.493.221 (4)136
C4—H4A···O1ii0.972.453.393 (3)165

Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2656).

References

  • Du, Z.-Y., Zhang, K. & Ng, S. W. (2007). Acta Cryst. E63, o2595–o2596.
  • Guilford, W. J., Shaw, K. J., Dallas, J. L., Koovakkat, S., Lee, W., Liang, A., Light, D. R., McCarrick, M. A., Whitlow, M., Ye, B. & Morrissey, M. M. (1999). J. Med. Chem. 42, 5415–5425. [PubMed]
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Sun, Y.-F. & Cui, Y.-P. (2007). Acta Cryst. E63, o1932–o1933.
  • Wei, J., Liang, G., Gai, Y. & Lu, J. (2008). Acta Cryst. E64, o1755. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography