PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1680.
Published online 2009 November 25. doi:  10.1107/S1600536809049472
PMCID: PMC2971772

trans-Diacetonitrile­tetra­kis(1H-pyrazole-κN 2)nickel(II) dinitrate

Abstract

In the title complex, [Ni(CH3CN)2(C3H4N2)4](NO3)2, the cation lies on an inversion center and adopts an octa­hedral coordination geometry about the Ni atom. The two acetonitrile ligands are in a trans conformation. N—H(...)O hydrogen bonds between cations and anions link the complex mol­ecules into one-dimensional chains running parallel to [100].

Related literature

For general background and the structures of other salts of this cation, see: Hsieh et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1680-scheme1.jpg

Experimental

Crystal data

  • [Ni(C2H3N)2(C3H4N2)4](NO3)2
  • M r = 537.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1680-efi1.jpg
  • a = 9.9815 (5) Å
  • b = 15.2831 (8) Å
  • c = 7.6845 (4) Å
  • β = 98.817 (2)°
  • V = 1158.40 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.90 mm−1
  • T = 150 K
  • 0.32 × 0.23 × 0.15 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.762, T max = 0.877
  • 13134 measured reflections
  • 2992 independent reflections
  • 2247 reflections with I > 2σ
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.149
  • S = 1.09
  • 2992 reflections
  • 161 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 1.13 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXSL97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL; software used to prepare material for publication: DIAMOND (Brandenburg, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049472/pv2232sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049472/pv2232Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the National Science Council of Taiwan for financial support.

supplementary crystallographic information

Comment

In the title complex (Fig. 1), the Ni atom lies on an inversion center and adopts an octahedral coordination geometry. The two acetonitrile ligands are in a trans conformation. The classocal intermolecular hydrogen bonds of the type N—H···O between cations and anions link the complex into one-dimensional chains (Table 1). For general background and the structures of other salts of this cation, see: Hsieh et al. (2009).

Experimental

A solution of Ni(NO3)2 . 6H2O (0.29 g, 0.97 mmol) and pyrazole (0.30 g, 4.30 mmol) in MeCN (25 ml) was stirred at room temperature for 10 min. After the resultant bluesolution was filtered and concentrated to 5 ml under vacuum, the concentrated filtrate was layered with diethyl ether (5-fold portion) and then kept at room temperature for 3 days. The air-stable blue crystals of the title compound (0.39 g, 74%) obtained were suitable for X-ray crystallographic analysis.

Refinement

All the H atoms were positioned geometrically and refined as riding atoms, with Cmethine—H = 0.95, Cmethyl—H = 0.98 and N—H = 0.88 Å while Uiso(H) = 1.2Ueq(Cmethine and N) and Uiso(H) = 1.5Ueq(Cmethyl). In the final difference map, the highest peak was 1.13 eÅ^-3^ (located in the center of the pyrazole ring N3/N4/C4/C5/C6) and the deepest hole was -0.49 eÅ-3 (0.48 Å from N4).

Figures

Fig. 1.
The structure of the title complex, showing 50% displacement ellipsoids; the H atoms are dipicted by circles of an arbitrary radius. Unlabeled atoms of the complex are related to labeled atoms by the symmetry operation: 1 - x, 1 - y, 2 - z.
Fig. 2.
A packing diagram of the title compound along the [001] direction showing the intermolecular hydrogen bonded network (dashed lines).

Crystal data

[Ni(C2H3N)2(C3H4N2)4](NO3)2F(000) = 556
Mr = 537.17Dx = 1.540 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3410 reflections
a = 9.9815 (5) Åθ = 2.7–25.6°
b = 15.2831 (8) ŵ = 0.90 mm1
c = 7.6845 (4) ÅT = 150 K
β = 98.817 (2)°Block, blue
V = 1158.40 (10) Å30.32 × 0.23 × 0.15 mm
Z = 2

Data collection

Bruker SMART APEXII diffractometer2992 independent reflections
Radiation source: fine-focus sealed tube2247 reflections with I > 2σ
graphiteRint = 0.038
ω scansθmax = 28.7°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.762, Tmax = 0.877k = −17→20
13134 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0852P)2 + 0.4971P] where P = (Fo2 + 2Fc2)/3
2992 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 1.13 e Å3
3 restraintsΔρmin = −0.49 e Å3

Special details

Experimental. IR (KBr, nmax/cm-1): 3120w (NH), 2283m (C[equivalent] N), 2210m (C[equivalent] N). Elem. Anal. Calcd (%) for C16H22N12NiO6: C 35.78; H 4.13; N 31.29. Found: C 35.32; H 4.01; N 31.03.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.5375 (3)0.65817 (19)0.7527 (4)0.0381 (6)
H10.63270.65070.75950.046*
C20.4624 (3)0.7228 (2)0.6544 (4)0.0459 (7)
H20.49480.76670.58370.055*
C30.3328 (3)0.70974 (19)0.6813 (4)0.0418 (7)
H30.25590.74290.63160.050*
C40.3550 (4)0.4130 (3)0.6557 (5)0.0562 (8)
H50.41940.43550.58820.067*
C50.2476 (4)0.3580 (3)0.5885 (5)0.0596 (9)
H60.22600.33730.47100.072*
C60.1824 (3)0.3406 (2)0.7211 (5)0.0540 (8)
H70.10430.30480.71820.065*
C70.7342 (3)0.44589 (18)0.7733 (4)0.0370 (6)
C80.8414 (3)0.4248 (2)0.6709 (5)0.0521 (8)
H90.81020.43770.54640.078*
H100.86410.36260.68460.078*
H110.92190.46000.71300.078*
N10.4583 (2)0.60812 (14)0.8361 (3)0.0300 (5)
N20.3329 (2)0.64146 (14)0.7908 (3)0.0344 (5)
H40.26010.62100.82840.041*
N30.3559 (2)0.43008 (14)0.8258 (3)0.0321 (5)
N40.2488 (3)0.38387 (18)0.8626 (4)0.0492 (6)
H80.22430.38200.96780.059*
N50.6507 (2)0.46282 (15)0.8523 (3)0.0326 (5)
N60.0036 (2)0.62767 (19)0.8693 (4)0.0478 (6)
Ni10.50000.50001.00000.02738 (16)
O1−0.1214 (2)0.61818 (17)0.8375 (3)0.0568 (6)
O20.0532 (3)0.6921 (2)0.9519 (5)0.0830 (9)
O30.0787 (2)0.57249 (18)0.8160 (5)0.0825 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0336 (13)0.0342 (14)0.0469 (16)−0.0011 (11)0.0078 (11)0.0069 (12)
C20.0505 (17)0.0364 (16)0.0508 (18)−0.0010 (13)0.0080 (14)0.0127 (13)
C30.0444 (15)0.0296 (14)0.0482 (16)0.0067 (12)−0.0025 (12)0.0060 (12)
C40.0565 (19)0.065 (2)0.0475 (15)−0.0069 (17)0.0077 (14)−0.0042 (16)
C50.063 (2)0.059 (2)0.054 (2)0.0008 (18)0.0007 (17)−0.0118 (17)
C60.0427 (17)0.0406 (18)0.078 (2)−0.0024 (13)0.0063 (16)−0.0045 (16)
C70.0355 (13)0.0302 (14)0.0446 (15)−0.0020 (11)0.0038 (11)−0.0021 (11)
C80.0481 (17)0.0486 (19)0.063 (2)0.0019 (14)0.0212 (16)−0.0106 (16)
N10.0263 (10)0.0244 (10)0.0388 (12)0.0008 (8)0.0031 (8)0.0021 (9)
N20.0280 (10)0.0261 (11)0.0472 (13)0.0001 (8)−0.0005 (9)0.0031 (9)
N30.0334 (11)0.0241 (11)0.0384 (11)0.0016 (8)0.0040 (9)0.0006 (9)
N40.0395 (13)0.0452 (15)0.0627 (16)−0.0042 (11)0.0069 (11)−0.0050 (13)
N50.0299 (10)0.0270 (11)0.0414 (12)0.0005 (9)0.0072 (9)−0.0003 (10)
N60.0319 (12)0.0479 (15)0.0629 (17)−0.0029 (11)0.0052 (11)0.0070 (13)
Ni10.0254 (2)0.0217 (2)0.0352 (3)0.00207 (16)0.00500 (17)0.00278 (18)
O10.0320 (10)0.0643 (15)0.0750 (16)−0.0002 (10)0.0110 (10)0.0051 (13)
O20.0547 (16)0.080 (2)0.104 (2)0.0142 (15)−0.0210 (16)−0.0326 (18)
O30.0345 (12)0.0513 (16)0.163 (3)−0.0029 (11)0.0188 (16)−0.0222 (17)

Geometric parameters (Å, °)

C1—N11.333 (3)C8—H90.9800
C1—C21.391 (4)C8—H100.9800
C1—H10.9500C8—H110.9800
C2—C31.355 (4)N1—N21.346 (3)
C2—H20.9500N1—Ni12.081 (2)
C3—N21.340 (4)N2—H40.8800
C3—H30.9500N3—N41.347 (3)
C4—N31.332 (4)N3—Ni12.100 (2)
C4—C51.398 (5)N4—H80.8800
C4—H50.9500N5—Ni12.097 (2)
C5—C61.318 (5)N6—O21.234 (4)
C5—H60.9500N6—O31.238 (4)
C6—N41.355 (5)N6—O11.243 (3)
C6—H70.9500Ni1—N1i2.081 (2)
C7—N51.134 (3)Ni1—N5i2.097 (2)
C7—C81.458 (4)Ni1—N3i2.100 (2)
N1—C1—C2111.0 (2)C3—N2—N1111.6 (2)
N1—C1—H1124.5C3—N2—H4124.2
C2—C1—H1124.5N1—N2—H4124.2
C3—C2—C1105.1 (3)C4—N3—N4102.5 (3)
C3—C2—H2127.5C4—N3—Ni1128.8 (2)
C1—C2—H2127.5N4—N3—Ni1128.40 (19)
N2—C3—C2107.6 (2)N3—N4—C6113.2 (3)
N2—C3—H3126.2N3—N4—H8123.4
C2—C3—H3126.2C6—N4—H8123.4
N3—C4—C5111.7 (3)C7—N5—Ni1177.3 (2)
N3—C4—H5124.1O2—N6—O3119.9 (3)
C5—C4—H5124.1O2—N6—O1120.4 (3)
C6—C5—C4106.1 (3)O3—N6—O1119.7 (3)
C6—C5—H6126.9N1—Ni1—N1i180.000 (1)
C4—C5—H6126.9N1—Ni1—N588.92 (9)
C5—C6—N4106.4 (3)N1i—Ni1—N591.08 (9)
C5—C6—H7126.8N1—Ni1—N5i91.08 (9)
N4—C6—H7126.8N1i—Ni1—N5i88.92 (9)
N5—C7—C8179.5 (3)N5—Ni1—N5i180.00 (12)
C7—C8—H9109.5N1—Ni1—N3i92.05 (8)
C7—C8—H10109.5N1i—Ni1—N3i87.95 (8)
H9—C8—H10109.5N5—Ni1—N3i90.28 (9)
C7—C8—H11109.5N5i—Ni1—N3i89.72 (8)
H9—C8—H11109.5N1—Ni1—N387.95 (8)
H10—C8—H11109.5N1i—Ni1—N392.05 (8)
C1—N1—N2104.8 (2)N5—Ni1—N389.72 (8)
C1—N1—Ni1131.92 (18)N5i—Ni1—N390.28 (9)
N2—N1—Ni1123.30 (16)N3i—Ni1—N3180.0
N1—C1—C2—C3−0.2 (4)N2—N1—Ni1—N5145.4 (2)
C1—C2—C3—N20.5 (4)C1—N1—Ni1—N5i146.4 (3)
N3—C4—C5—C6−0.5 (5)N2—N1—Ni1—N5i−34.6 (2)
C4—C5—C6—N40.0 (4)C1—N1—Ni1—N3i56.7 (3)
C2—C1—N1—N2−0.2 (3)N2—N1—Ni1—N3i−124.3 (2)
C2—C1—N1—Ni1178.9 (2)C1—N1—Ni1—N3−123.3 (3)
C2—C3—N2—N1−0.7 (3)N2—N1—Ni1—N355.7 (2)
C1—N1—N2—C30.5 (3)C4—N3—Ni1—N160.2 (3)
Ni1—N1—N2—C3−178.69 (18)N4—N3—Ni1—N1−127.2 (2)
C5—C4—N3—N40.7 (4)C4—N3—Ni1—N1i−119.8 (3)
C5—C4—N3—Ni1174.8 (2)N4—N3—Ni1—N1i52.8 (2)
C4—N3—N4—C6−0.7 (3)C4—N3—Ni1—N5−28.7 (3)
Ni1—N3—N4—C6−174.8 (2)N4—N3—Ni1—N5143.9 (2)
C5—C6—N4—N30.5 (4)C4—N3—Ni1—N5i151.3 (3)
C1—N1—Ni1—N5−33.6 (3)N4—N3—Ni1—N5i−36.1 (2)

Symmetry codes: (i) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H8···O1ii0.881.942.797 (4)164
N2—H4···O30.881.952.782 (3)158

Symmetry codes: (ii) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2232).

References

  • Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hsieh, C.-C., Lee, C.-J. & Horng, Y.-C. (2009). Organometallics, 28, 4923–4928.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography