PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3173.
Published online 2009 November 21. doi:  10.1107/S1600536809049071
PMCID: PMC2971768

o-Phenyl­enediammonium bis­(3-carb­oxy-4-hydroxy­benzene­sulfonate)

Abstract

In the title salt, C6H10N2 2+·2C7H5O6S, the negative charge of the anion resides on the sulfonate group. In the crystal, the cations and anions are ­linked by N—H(...)O and O—H(...)O hydrogen bonds, forming a three-dimensional network. The complete dication is generated by crystallographic twofold symmetry.

Related literature

For related structures, see: Bakasova et al. (1991 [triangle]); Du et al. (2008 [triangle]); Meng et al. (2008 [triangle]); Raj et al. (2003 [triangle]); Smith (2005 [triangle]); Smith et al. (2004 [triangle], 2005a [triangle],b [triangle],c [triangle], 2006 [triangle]); Wang & Wei (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3173-scheme1.jpg

Experimental

Crystal data

  • C6H10N2 2+·2C7H5O6S
  • M r = 544.50
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3173-efi1.jpg
  • a = 11.667 (2) Å
  • b = 16.081 (3) Å
  • c = 12.356 (3) Å
  • β = 105.90 (3)°
  • V = 2229.5 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 566 K
  • 0.30 × 0.28 × 0.24 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.902, T max = 0.923
  • 11440 measured reflections
  • 2543 independent reflections
  • 2019 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.108
  • S = 1.00
  • 2543 reflections
  • 178 parameters
  • 5 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL/PC and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049071/ng2658sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049071/ng2658Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from CSLG (No. KY10657) and by the Natural Science Fund of Jiangsu Province (No. 08KJB150001).

supplementary crystallographic information

Comment

A number of proton-transfer compounds of 3-carboxy-4-hydroxybenzenesulfonic acid with Lewis bases have been widely studied because of the good crystallinity of many of the compounds (Smith et al., 2004; Wang & Wei, 2007; Meng et al., 2008; Du et al., 2008). The feature is the presence of hydrogen-bonding interactions, resulted from the aminium donor group and the sulfonate and carboxyl O-atom acceptors. There are some aniline-type proton-transfer compounds reported during the past several years. These include compounds with aniline (Bakasova et al., 1991), the 4-X-substituted anilines (X = F, Cl, Br) (Smith et al., 2005b), 3-aminobenzoic acid (Smith 2005), 4-aminobenzoic acid (Smith et al., 2005c), benzylamine (Smith et al., 2006), 1,4-phenylenediamine (Smith et al., 2005a). The present paper is concerned with the crystal structure of a new proton-transfer compound of 3-carboxy-4-hydroxybenzenesulfonic acid with 1,2-phenylenediamine as Lewis base.

In the compound, the asymmetric unit consists of one half 1,2-phenylenediaminium dication and one 3-carboxy-4-hydroxy-benzenesulfonate anion. The hydrogen atom was transferred from the sulfonic group to the amino nitrogen atom, forming an 1:2 organic salt. In the anion (Fig. 1 and Table 1), the carboxyl group is nearly coplanar with the benzene ring [the dihedral angle is 3.9 o] and there is an intramolecular hydrogen bond O3—H···O6 2.600 (3) Å involving the hydroxy group and carboxyl atom. In addition, intermolecular hydrogen bonds between a sulfonate O atom and a carboxylate O atom [O5···O4 = 2.668 (2) Å; symmetry code: 1/2-x,1/2+y,1/2-z] connect the anions through head-to-tail into a one-dmensional chain (Fig. 2 and Table 2). The protonated N atoms form hydrogen bonds with three sulfonate O atoms and one carboxyl O atom [range 2.755 (3)—3.176 (3) Å) (Fig. 3 and Table 2), forming a three-dimensional network. The network are further consolidated by π—π stacking effects between the benzene rings of anions [the inter-ring centroid distance is 3.564 (1) Å].

Experimental

The title compound was synthesized by heating 3-carboxy-4-hydroxybenzenesulfonic acid (0.218 g, 1 mmol) and 1,2-phenylenediamine (0.108 g, 1 mmol) in water (20 mL) for 2 hours. After evaporation the solution, dark-blue block crystals formed in high yield.

Refinement

Carbon-bound H atoms were positioned geometrically (C—H = 0.93 Å), and were included in the refinement in the riding mode approximation, with Uiso(H) = 1.2Ueq(C). H atoms bound to O and N atoms were located in a difference Fourier map and refined with restraints [N—H and O—H = 0.85 (1) Å, with Uiso(H) values fixed at 1.5Ueq(N) and 1.5Ueq(O)].

Figures

Fig. 1.
A view of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. [Symmetry code A = 1-x, y, 1/2-z]. The H-bonds are shown as dashed lines.
Fig. 2.
Viw of the one-dimensional hydrogen bonded chain of 3-carboxylato-4-hydroxybenzenesulfonate shown with dashed lines, running along the b axis.
Fig. 3.
The cell packing diagram indicating hydrogen bonds links with dashed lines, viewed down the a axis.

Crystal data

C6H10N22+·2C7H5O6SF(000) = 1128
Mr = 544.50Dx = 1.622 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6744 reflections
a = 11.667 (2) Åθ = 3.3–27.6°
b = 16.081 (3) ŵ = 0.31 mm1
c = 12.356 (3) ÅT = 566 K
β = 105.90 (3)°Block, dark-blue
V = 2229.5 (9) Å30.30 × 0.28 × 0.24 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer2543 independent reflections
Radiation source: fine-focus sealed tube2019 reflections with I > 2σ(I)
graphiteRint = 0.042
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
dtfind.ref scansh = −15→15
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −20→20
Tmin = 0.902, Tmax = 0.923l = −15→15
11440 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0426P)2 + 3.7751P] where P = (Fo2 + 2Fc2)/3
2543 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.34 e Å3
5 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1315 (2)0.73023 (13)0.37688 (17)0.0286 (5)
C20.0224 (2)0.71605 (15)0.40005 (19)0.0334 (5)
C3−0.0144 (2)0.63524 (16)0.4130 (2)0.0400 (6)
H3−0.08700.62590.42850.048*
C40.0566 (2)0.56927 (14)0.40305 (19)0.0338 (5)
H40.03140.51530.41080.041*
C50.16661 (19)0.58267 (13)0.38137 (17)0.0255 (4)
C60.20342 (19)0.66230 (13)0.36823 (17)0.0265 (4)
H60.27650.67110.35350.032*
C70.1671 (2)0.81562 (14)0.35783 (19)0.0340 (5)
C80.5460 (2)0.77864 (15)0.2988 (2)0.0463 (7)
H80.57700.82880.33150.056*
C90.5925 (2)0.70459 (15)0.3483 (2)0.0379 (6)
H90.65450.70470.41420.046*
C100.54644 (18)0.63079 (13)0.29932 (17)0.0258 (4)
S10.25193 (5)0.49616 (3)0.36307 (5)0.03052 (16)
O10.37475 (17)0.52318 (12)0.3896 (2)0.0617 (6)
O20.23442 (14)0.43243 (10)0.43955 (14)0.0367 (4)
O3−0.05305 (18)0.77829 (12)0.40738 (17)0.0513 (5)
H3A−0.014 (3)0.8226 (13)0.403 (3)0.077*
O40.2075 (2)0.47241 (12)0.24585 (15)0.0656 (7)
O50.27040 (17)0.82146 (10)0.33577 (16)0.0444 (5)
H5A0.276 (3)0.8699 (10)0.310 (2)0.067*
O60.10406 (17)0.87634 (10)0.36053 (16)0.0498 (5)
N10.59386 (18)0.55255 (12)0.35330 (17)0.0326 (4)
H1A0.6474 (19)0.5606 (17)0.4158 (14)0.049*
H1B0.620 (2)0.5226 (15)0.3080 (19)0.049*
H1C0.5367 (18)0.5255 (15)0.368 (2)0.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0364 (12)0.0250 (11)0.0238 (10)0.0015 (9)0.0075 (9)0.0000 (8)
C20.0353 (12)0.0369 (13)0.0288 (11)0.0079 (10)0.0101 (10)0.0001 (10)
C30.0319 (13)0.0456 (15)0.0469 (14)0.0002 (11)0.0184 (11)0.0031 (12)
C40.0349 (12)0.0316 (12)0.0364 (13)−0.0060 (10)0.0121 (10)0.0003 (10)
C50.0297 (11)0.0241 (10)0.0233 (10)0.0008 (8)0.0080 (9)−0.0009 (8)
C60.0278 (11)0.0261 (11)0.0258 (11)−0.0005 (9)0.0079 (9)−0.0008 (8)
C70.0448 (14)0.0277 (12)0.0280 (12)0.0027 (10)0.0073 (10)−0.0003 (9)
C80.0600 (18)0.0249 (12)0.0618 (17)−0.0104 (11)0.0298 (13)−0.0116 (11)
C90.0422 (14)0.0343 (13)0.0382 (13)−0.0092 (11)0.0126 (11)−0.0088 (10)
C100.0263 (11)0.0235 (10)0.0288 (11)−0.0002 (8)0.0094 (9)0.0011 (8)
S10.0387 (3)0.0218 (3)0.0332 (3)0.0037 (2)0.0134 (2)0.0026 (2)
O10.0403 (11)0.0380 (11)0.1180 (19)0.0047 (8)0.0410 (12)0.0108 (11)
O20.0404 (9)0.0279 (8)0.0394 (9)−0.0004 (7)0.0070 (7)0.0091 (7)
O30.0508 (12)0.0455 (11)0.0653 (12)0.0171 (9)0.0291 (10)0.0021 (10)
O40.1183 (19)0.0432 (11)0.0312 (10)0.0353 (12)0.0134 (11)−0.0044 (8)
O50.0530 (11)0.0263 (9)0.0593 (12)−0.0020 (8)0.0246 (9)0.0068 (8)
O60.0623 (12)0.0272 (9)0.0616 (12)0.0110 (8)0.0200 (10)0.0001 (8)
N10.0339 (11)0.0304 (11)0.0322 (11)0.0019 (9)0.0070 (8)0.0050 (9)

Geometric parameters (Å, °)

C1—C21.398 (3)C8—C91.380 (4)
C1—C61.399 (3)C8—H80.9300
C1—C71.472 (3)C9—C101.373 (3)
C2—O31.352 (3)C9—H90.9300
C2—C31.391 (3)C10—C10i1.391 (4)
C3—C41.372 (3)C10—N11.460 (3)
C3—H30.9300S1—O21.4459 (16)
C4—C51.398 (3)S1—O11.447 (2)
C4—H40.9300S1—O41.4495 (19)
C5—C61.374 (3)O3—H3A0.86 (3)
C5—S11.761 (2)O5—H5A0.849 (10)
C6—H60.9300N1—H1A0.860 (10)
C7—O61.228 (3)N1—H1B0.856 (10)
C7—O51.310 (3)N1—H1C0.857 (10)
C8—C8i1.378 (6)
C2—C1—C6119.2 (2)C8i—C8—H8119.8
C2—C1—C7119.8 (2)C9—C8—H8119.8
C6—C1—C7121.0 (2)C10—C9—C8119.5 (2)
O3—C2—C3117.2 (2)C10—C9—H9120.3
O3—C2—C1122.6 (2)C8—C9—H9120.3
C3—C2—C1120.2 (2)C9—C10—C10i120.17 (14)
C4—C3—C2119.9 (2)C9—C10—N1119.4 (2)
C4—C3—H3120.0C10i—C10—N1120.45 (11)
C2—C3—H3120.0O2—S1—O1111.92 (12)
C3—C4—C5120.4 (2)O2—S1—O4112.98 (12)
C3—C4—H4119.8O1—S1—O4111.50 (15)
C5—C4—H4119.8O2—S1—C5106.86 (10)
C6—C5—C4120.0 (2)O1—S1—C5107.06 (11)
C6—C5—S1121.00 (17)O4—S1—C5106.05 (11)
C4—C5—S1118.93 (16)C2—O3—H3A104 (2)
C5—C6—C1120.3 (2)C7—O5—H5A108 (2)
C5—C6—H6119.8C10—N1—H1A111.8 (19)
C1—C6—H6119.8C10—N1—H1B110.2 (19)
O6—C7—O5122.7 (2)H1A—N1—H1B112 (3)
O6—C7—C1122.7 (2)C10—N1—H1C108.4 (19)
O5—C7—C1114.6 (2)H1A—N1—H1C107 (3)
C8i—C8—C9120.33 (15)H1B—N1—H1C107 (3)
C6—C1—C2—O3−178.6 (2)C2—C1—C7—O6−0.5 (3)
C7—C1—C2—O3−0.9 (3)C6—C1—C7—O6177.2 (2)
C6—C1—C2—C3−0.7 (3)C2—C1—C7—O5−179.4 (2)
C7—C1—C2—C3177.0 (2)C6—C1—C7—O5−1.7 (3)
O3—C2—C3—C4178.0 (2)C8i—C8—C9—C100.1 (5)
C1—C2—C3—C40.0 (4)C8—C9—C10—C10i−0.1 (4)
C2—C3—C4—C50.9 (4)C8—C9—C10—N1−178.5 (2)
C3—C4—C5—C6−1.0 (3)C6—C5—S1—O2147.63 (18)
C3—C4—C5—S1−177.25 (19)C4—C5—S1—O2−36.1 (2)
C4—C5—C6—C10.2 (3)C6—C5—S1—O127.6 (2)
S1—C5—C6—C1176.44 (16)C4—C5—S1—O1−156.21 (19)
C2—C1—C6—C50.6 (3)C6—C5—S1—O4−91.6 (2)
C7—C1—C6—C5−177.1 (2)C4—C5—S1—O484.6 (2)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.86 (1)2.46 (2)3.157 (3)139 (2)
N1—H1B···O4i0.86 (1)2.42 (2)3.176 (3)147 (2)
N1—H1A···O2ii0.86 (1)1.94 (1)2.795 (3)174 (3)
N1—H1B···O6iii0.86 (1)2.46 (3)2.836 (3)107 (2)
N1—H1C···O10.86 (1)1.98 (2)2.755 (3)150 (3)
O3—H3A···O60.86 (3)1.82 (2)2.600 (3)151 (3)
O5—H5A···O4iv0.85 (1)1.82 (1)2.668 (2)178 (3)

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x+1/2, y−1/2, z; (iv) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2658).

References

  • Bakasova, Z. B., Abdybaliev, D. A., Sharipov, Kh. T., Akbaev, A. A., Ibragimov, B. T., Talipov, S. A. & Ismankulov, A. I. (1991). Uzb. Khim. Zh. pp. 22–25.
  • Du, G., Liu, Z., Chu, Q., Li, Z. & Zhang, S. (2008). Acta Cryst. E64, o1947–o1948. [PMC free article] [PubMed]
  • Meng, X.-G., Xiao, Y.-L., Wang, Z.-L. & Liu, C.-L. (2008). Acta Cryst. C64, o53–o57. [PubMed]
  • Raj, S. B., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70–76.
  • Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G. (2005). Acta Cryst. E61, o3398–o3400.
  • Smith, G., Wermuth, U. D. & Healy, P. C. (2005a). Acta Cryst. C61, o555–o558. [PubMed]
  • Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o1863–o1865.
  • Smith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575–o581. [PubMed]
  • Smith, G., Wermuth, U. D. & White, J. M. (2005b). Acta Cryst. C61, o105–o109. [PubMed]
  • Smith, G., Wermuth, U. D. & White, J. M. (2005c). Acta Cryst. E61, o313–o316.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, Z.-L. & Wei, L.-H. (2007). Acta Cryst. E63, o1448–o1449.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography