PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1516.
Published online 2009 November 4. doi:  10.1107/S1600536809045607
PMCID: PMC2971764

Bis(μ-5-nitro-2-oxidobenzoato)bis­[triaqua­zinc(II)]

Abstract

The title complex mol­ecule, [Zn2(C7H3NO5)2(H2O)6], is a centrosymmetric dimer containing two zinc(II) cations with distorted octa­hedral geometries provided by the O atoms of three water mol­ecules and the two bridging bidentate 5-nitro­salicylate ligands. The separation between the metal centres in the dimer is 3.1790 (11) Å. The crystal structure is stabilized by O—H(...)O hydrogen bonds, one of which intra­dimeric, linking the dimers into a three-dimensional network.

Related literature

For examples of bonding modes exhibited by salicylate anions, see: Klug et al. (1958 [triangle]); Risannen et al. (1987 [triangle]); Charles et al. (1983 [triangle]); Jagner et al. (1976 [triangle]); Fu et al. (2005 [triangle]). For the crystal structures of 5-nitro­salicylate zinc(II) complexes, see: Tahir et al. (1997 [triangle]); Morgant et al. (2006 [triangle]); Erxleben (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1516-scheme1.jpg

Experimental

Crystal data

  • [Zn2(C7H3NO5)2(H2O)6]
  • M r = 601.04
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1516-efi1.jpg
  • a = 10.858 (3) Å
  • b = 13.645 (3) Å
  • c = 6.6367 (17) Å
  • β = 91.887 (4)°
  • V = 982.7 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.53 mm−1
  • T = 294 K
  • 0.26 × 0.10 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.752, T max = 0.821
  • 5435 measured reflections
  • 2009 independent reflections
  • 1418 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.088
  • S = 1.03
  • 2009 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045607/rz2375sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045607/rz2375Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Yanshan University for financial support.

supplementary crystallographic information

Comment

From a coordination standpoint, salicylate is a versatile ligand displaying a variety of bonding modes. For example, mono-deprotonation of salicylic acid normally leads to complexes containing the coordinated 2-HOC6H4CO2 (salH) anion. This anion is known to bond to metals as a unidentate carboxylate e.g. in [Zn(salH)2(H2O)2] (Klug et al. 1958; Risannen et al., 1987), as a bidentate chelating carboxylate e.g. in [Cd2(salH)4(H2O)4] (Charles et al. 1983), as a bidentate chelating ligand using one carboxylate oxygen and the hydroxyl oxygen e.g. in [Cu(salH)2].2H2O (Jagner et al., 1976). On the other hand, deprotonation of both the hydroxyl and carboxyl protons from the parent acid generates the [OC6H4CO2]2- (sal2-) anion, which can be found chelating through the phenolate oxygen and one of the carboxyl O atoms as in [Ti(sal)3]2- (Fu, et al., 2005).

Although many complexes which use salicylate as ligand have been synthesized, two structures coming out from the reaction of the 5-nitrosalicylic acid with zinc salt are known to us: a tetrahydrate (Tahir et al., 1997), in an approximately octahedral geometry around the metal surrounding O atoms from four water ligands and two unidentate monoanionic 5-nitrosalicylate ligands using one carboxylate oxygen and a pentahydrate (Morgant, et al., 2006), penta-aqua-(5-nitrosalicylato-O)-zinc(ii) 5-nitrosalicylate monohydrate, in which the metal is coordinated by five water ligands and one carboxylato O-atom from the 5-nitrosalicylato ligand. Interestingly, the title binuclear complex presents a third, different structure, being an hexahydrate dimer with its two zinc(II) atoms bridged by two carboxylate O atoms.

The structure of the title compounds is shown in Fig. 1. The distorted octahedral environment of each zinc(II) cation is defined by three O atoms from three water molecules, another two (the phenolate and a carboxylate one) from a chelating 5-nitrosalicylate and the centrosymmetric image of the latter. These two carboxylate O atoms bridge neighbouring zinc cations into a planar, four-membered matallacycle resulting in a Zn1···Zn1i (see Fig 1 for symmetry codes) separation of 3.1790 (11) Å. It is the shortest of separation of Zn···Zn as reported previously in binuclear and tetranuclear zinc complex with salicylate ligands (Erxleben, 2001) It is worth mentioning that the use of a carboxylate oxygen as a bridging atom in salicylate metal complexes is rare; the title binuclear complex appears to be the first example of this behaviour in zinc complexes.

The carboxy group C1/O1/O2 as well as the nitro group N1/O4/O5 are effectively coplanar to the aromatic ring in the ligand as well as to the central Zn1/O2/C1/C2/C7/O3 six-membered ring generated upon coordination. The centrosymmetric character of the binuclear unit results in a large planar group composed of the two almost planar chelating ligands, the two zinc atoms and two O atoms from two aqua; the O atoms atoms from the remaining four aqua present Zn—O bonds almost orthogonal to this plane.

There are a number O—H···O hydrogen bonds stabilizing the structure (Table 1). The interaction involving O7—H7B and O1i is intradimeric and coplanar to the dimer mean plane. The remainig ones define a three-dimensional framework.

Experimental

The title complex was prepared by digesting a mixture of 5-nitrosalicylic acid (5 mmol) and fresh zinc hydroxide (10 mmol) in distilled water (30 ml) at 80 °C under stirring for 10 min. After filtration yellow-green crystals grew out of the solution by slow evaporation over a period of three days at room temperature. The starting zinc hydroxide was prepared from 50 ml aqueous solutions of 0.9 g of zinc chloride and 0.5 g of sodium hydroxide.

Refinement

The H atoms of the water molecule were found in a difference Fourier map. However, during refinement, they were restrained to O–H = 0.85 (1) Å and their Uiso values were set at 1.2 Ueq(O). Other H atoms were treated as riding, with C–H = 0.93 Å, and with Uiso (H) = 1.2 Ueq(C).

Figures

Fig. 1.
The structure of the title compound, with the atom-numbering scheme, and 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii and hydrogen bonds are indicated by dashed lines. [Symmetry code: (i) -x + 1, -y + ...

Crystal data

[Zn2(C7H3NO5)2(H2O)6]F(000) = 608
Mr = 601.04Dx = 2.031 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1942 reflections
a = 10.858 (3) Åθ = 2.4–25.8°
b = 13.645 (3) ŵ = 2.53 mm1
c = 6.6367 (17) ÅT = 294 K
β = 91.887 (4)°Block, yellow-green
V = 982.7 (4) Å30.26 × 0.10 × 0.08 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer2009 independent reflections
Radiation source: fine-focus sealed tube1418 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] and ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −13→13
Tmin = 0.752, Tmax = 0.821k = −17→12
5435 measured reflectionsl = −8→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0314P)2 + 1.0942P] where P = (Fo2 + 2Fc2)/3
2009 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.55 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.52129 (4)0.61159 (3)0.44189 (8)0.03665 (16)
O10.7644 (3)0.37686 (19)0.3938 (5)0.0555 (9)
O20.6145 (2)0.48166 (16)0.4439 (4)0.0310 (6)
O30.6603 (2)0.67583 (17)0.3118 (4)0.0364 (6)
O41.2058 (2)0.6122 (2)0.1104 (5)0.0506 (8)
O51.1653 (2)0.4656 (2)0.2105 (4)0.0393 (7)
O60.4498 (3)0.5753 (2)0.1270 (5)0.0564 (8)
H6A0.49330.58480.02490.068*
H6B0.37210.57660.10970.068*
O70.4029 (3)0.72837 (19)0.4384 (5)0.0507 (8)
H7B0.34000.70420.49310.061*
H7A0.39070.77240.35040.061*
O80.5896 (3)0.64083 (19)0.7437 (4)0.0493 (8)
H8A0.64120.59610.77160.059*
H8B0.61310.69970.75460.059*
N11.1340 (3)0.5505 (2)0.1763 (5)0.0333 (7)
C10.7233 (3)0.4611 (2)0.3858 (5)0.0271 (8)
C20.8053 (3)0.5409 (2)0.3128 (5)0.0242 (7)
C30.9258 (3)0.5143 (3)0.2764 (5)0.0273 (8)
H30.95030.44960.29690.033*
C41.0097 (3)0.5813 (3)0.2108 (5)0.0281 (8)
C50.9774 (3)0.6787 (3)0.1786 (6)0.0333 (9)
H5A1.03500.72360.13460.040*
C60.8604 (3)0.7068 (3)0.2126 (6)0.0336 (9)
H60.83870.77190.19050.040*
C70.7692 (3)0.6412 (2)0.2803 (5)0.0268 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0288 (2)0.0205 (2)0.0615 (3)−0.00197 (18)0.01434 (19)−0.0010 (2)
O10.0525 (18)0.0247 (16)0.092 (2)0.0100 (12)0.0359 (17)0.0158 (15)
O20.0268 (13)0.0184 (12)0.0483 (17)−0.0017 (10)0.0091 (11)−0.0007 (11)
O30.0268 (14)0.0236 (13)0.0593 (19)0.0032 (10)0.0096 (12)0.0079 (12)
O40.0274 (14)0.0560 (19)0.069 (2)−0.0043 (14)0.0138 (13)0.0088 (16)
O50.0314 (14)0.0428 (17)0.0436 (17)0.0106 (12)0.0012 (12)0.0017 (13)
O60.0329 (16)0.076 (2)0.060 (2)−0.0017 (15)0.0045 (14)−0.0002 (17)
O70.0429 (17)0.0279 (16)0.082 (2)0.0012 (12)0.0102 (16)0.0103 (14)
O80.064 (2)0.0238 (14)0.061 (2)−0.0075 (13)0.0134 (15)−0.0095 (13)
N10.0264 (16)0.044 (2)0.0293 (18)−0.0002 (14)0.0000 (13)−0.0024 (14)
C10.0311 (19)0.0213 (18)0.029 (2)0.0013 (14)0.0042 (15)−0.0004 (14)
C20.0243 (17)0.0244 (18)0.0240 (19)−0.0004 (13)0.0021 (14)0.0008 (14)
C30.032 (2)0.0263 (19)0.023 (2)0.0022 (14)0.0015 (15)0.0017 (15)
C40.0221 (17)0.039 (2)0.023 (2)0.0008 (14)0.0012 (14)0.0003 (15)
C50.0287 (19)0.034 (2)0.037 (2)−0.0037 (15)0.0050 (16)0.0027 (17)
C60.035 (2)0.0226 (19)0.044 (2)0.0003 (15)0.0051 (17)0.0069 (16)
C70.0271 (18)0.0243 (18)0.029 (2)0.0021 (14)0.0036 (14)0.0015 (14)

Geometric parameters (Å, °)

Zn1—O31.969 (2)O7—H7A0.8457
Zn1—O22.041 (2)O8—H8A0.8452
Zn1—O72.047 (3)O8—H8B0.8448
Zn1—O2i2.107 (2)N1—C41.440 (4)
Zn1—O82.150 (3)C1—C21.497 (5)
Zn1—O62.260 (3)C2—C31.386 (5)
O1—C11.234 (4)C2—C71.439 (5)
O2—C11.285 (4)C3—C41.372 (5)
O3—C71.297 (4)C3—H30.9300
O4—N11.237 (4)C4—C51.389 (5)
O5—N11.226 (4)C5—C61.353 (5)
O6—H6A0.8486C5—H5A0.9300
O6—H6B0.8486C6—C71.418 (5)
O7—H7B0.8511C6—H60.9300
O3—Zn1—O290.14 (10)Zn1—O8—H8B110.5
O3—Zn1—O797.96 (11)H8A—O8—H8B118.1
O2—Zn1—O7170.84 (10)O5—N1—O4122.3 (3)
O3—Zn1—O2i169.08 (10)O5—N1—C4120.1 (3)
O2—Zn1—O2i79.97 (10)O4—N1—C4117.5 (3)
O7—Zn1—O2i91.59 (11)O1—C1—O2121.7 (3)
O3—Zn1—O894.59 (11)O1—C1—C2118.2 (3)
O2—Zn1—O889.95 (11)O2—C1—C2120.1 (3)
O7—Zn1—O893.63 (12)C3—C2—C7118.5 (3)
O2i—Zn1—O890.07 (10)C3—C2—C1116.2 (3)
O3—Zn1—O686.38 (11)C7—C2—C1125.4 (3)
O2—Zn1—O688.33 (11)C4—C3—C2121.4 (3)
O7—Zn1—O687.93 (12)C4—C3—H3119.3
O2i—Zn1—O688.69 (11)C2—C3—H3119.3
O8—Zn1—O6178.03 (11)C3—C4—C5121.3 (3)
C1—O2—Zn1130.4 (2)C3—C4—N1119.4 (3)
C1—O2—Zn1i129.6 (2)C5—C4—N1119.2 (3)
Zn1—O2—Zn1i100.03 (10)C6—C5—C4118.6 (3)
C7—O3—Zn1128.7 (2)C6—C5—H5A120.7
Zn1—O6—H6A121.5C4—C5—H5A120.7
Zn1—O6—H6B115.5C5—C6—C7122.9 (3)
H6A—O6—H6B117.7C5—C6—H6118.5
Zn1—O7—H7B101.9C7—C6—H6118.5
Zn1—O7—H7A130.2O3—C7—C6118.1 (3)
H7B—O7—H7A117.4O3—C7—C2124.6 (3)
Zn1—O8—H8A106.0C6—C7—C2117.3 (3)
O3—Zn1—O2—C12.4 (3)O2—C1—C2—C7−6.9 (5)
O2i—Zn1—O2—C1177.8 (4)C7—C2—C3—C40.0 (5)
O8—Zn1—O2—C1−92.1 (3)C1—C2—C3—C4−179.4 (3)
O6—Zn1—O2—C188.8 (3)C2—C3—C4—C50.1 (6)
O3—Zn1—O2—Zn1i−175.34 (12)C2—C3—C4—N1179.6 (3)
O2i—Zn1—O2—Zn1i0.0O5—N1—C4—C3−2.0 (5)
O8—Zn1—O2—Zn1i90.08 (11)O4—N1—C4—C3177.5 (3)
O6—Zn1—O2—Zn1i−88.96 (12)O5—N1—C4—C5177.5 (3)
O2—Zn1—O3—C7−8.9 (3)O4—N1—C4—C5−3.0 (5)
O7—Zn1—O3—C7175.4 (3)C3—C4—C5—C6−0.2 (6)
O2i—Zn1—O3—C7−33.9 (7)N1—C4—C5—C6−179.7 (3)
O8—Zn1—O3—C781.0 (3)C4—C5—C6—C70.2 (6)
O6—Zn1—O3—C7−97.2 (3)Zn1—O3—C7—C6−170.1 (3)
Zn1—O2—C1—O1−178.2 (3)Zn1—O3—C7—C28.7 (5)
Zn1i—O2—C1—O1−1.1 (5)C5—C6—C7—O3178.8 (4)
Zn1—O2—C1—C23.9 (5)C5—C6—C7—C2−0.1 (6)
Zn1i—O2—C1—C2−178.9 (2)C3—C2—C7—O3−178.8 (3)
O1—C1—C2—C3−5.5 (5)C1—C2—C7—O30.5 (6)
O2—C1—C2—C3172.4 (3)C3—C2—C7—C60.0 (5)
O1—C1—C2—C7175.2 (4)C1—C2—C7—C6179.3 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O8—H8B···O3ii0.841.812.651 (3)173
O8—H8A···O5iii0.852.263.038 (4)153
O7—H7A···O8iv0.852.583.023 (4)114
O7—H7B···O1i0.851.772.596 (4)163
O6—H6B···O4v0.851.872.696 (4)164
O6—H6A···O8vi0.852.303.135 (5)168

Symmetry codes: (ii) x, −y+3/2, z+1/2; (iii) −x+2, −y+1, −z+1; (iv) x, −y+3/2, z−1/2; (i) −x+1, −y+1, −z+1; (v) x−1, y, z; (vi) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2375).

References

  • Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Charles, N. G., Griffith, E. A. H., Rodesiler, P. F. & Amma, E. L. (1983). Inorg. Chem. 22 2717–2723.
  • Erxleben, A. (2001). Inorg. Chem. 40 208–213. [PubMed]
  • Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1730–m1732.
  • Jagner, S., Hazell, R. G. & Larsen, K. P. (1976). Acta Cryst. B32, 548–554.
  • Klug, H. P., Alexander, L. E. & Sumner, G. G. (1958). Acta Cryst. 11, 41–46.
  • Morgant, G., Bouhmaida, N., Balde, L., Ghermani, N. E. & D’Angelo, J. (2006). Polyhedron, 25, 2229–2235.
  • Risannen, K., Valkonen, J., Kokkonen, P. & Leskela, M. (1987). Acta Chem. Scand. Ser. A, 41, 299–309.
  • Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tahir, M. N., Ülkü, D., Movsumov, E. M. & Hökelek, T. (1997). Acta Cryst. C53, 176–179.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography