PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1682.
Published online 2009 November 25. doi:  10.1107/S1600536809049848
PMCID: PMC2971761

Tetra­aqua­diazido­cobalt(II) 4,4′-dicarboxyl­ato-1,1′-ethyl­enedi­pyridinium dihydrate

Abstract

In the title compound, [Co(N3)2(H2O)4]·C14H12N2O4·2H2O, the metal complex mol­ecule is centrosymmetric, the Co(II) ion being six-coordinated by two azide N atoms and four aqua O atoms with a trans-octa­hedral geometry. The zwitterionic organic mol­ecule is also centrosymmetric. In the crystal, the components are associated into a two-dimensional network through O—H(...)O hydrogen bonds. Further O—H(...)O and O—H(...)N inter­actions give a three-dimensional structure. The free water molecule is disordered over two positions in a 0.787 (5):0.213 (5) ratio.

Related literature

For background information on hydrogen bonds in crystal engineering, see: Baures et al. (2006 [triangle]); Braga & Grepioni (2000 [triangle]); Maly et al. (2006 [triangle]). For the ligand synthesis, see: Loeb et al. (2006 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]); Etter (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1682-scheme1.jpg

Experimental

Crystal data

  • [Co(N3)2(H2O)4]·C14H12N2O4·2H2O
  • M r = 523.34
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1682-efi1.jpg
  • a = 7.1951 (5) Å
  • b = 9.0354 (7) Å
  • c = 9.0915 (5) Å
  • α = 71.402 (3)°
  • β = 85.568 (2)°
  • γ = 69.752 (2)°
  • V = 525.20 (6) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.89 mm−1
  • T = 296 K
  • 0.08 × 0.08 × 0.02 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.932, T max = 0.982
  • 6498 measured reflections
  • 2029 independent reflections
  • 2016 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.089
  • S = 1.18
  • 2029 reflections
  • 183 parameters
  • 13 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049848/bg2309sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049848/bg2309Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful for financial support from the NSFC (20771038), 95 and the Shanghai Leading Academic Discipline Project (B409).

supplementary crystallographic information

Comment

The D—H···A hydrogen bonds, ranging from the strong ones involving O—H and N—H to the weak ones involving C—H, have been widely used as a putative tool for engineering organic and metal-organic solids (Braga & Grepioni, 2000; Baures et al., 2006; Maly et al., 2006). In this paper, we report the hydrogen-bonded structure of the title compound, (I), which contains a nuetral metal complex molecule, [Co(N3)2(H2O)4], and a zwitterionic dicarboxylate, 1,2-bis(4-carboxylatopyridinium)ethane(Loeb et al., 2006).

The molecular structure is shown in Fig. 1. The metal complex molecule is centrosymmetric, with the Co(II) ion being six-coordinated by two azides and four aquas with a trans-octahedral geometry.The axial Co–N distances are slightly shorter than the equatorial Co–O ones. The zwitterionic molecule is also centrosymmetric. As shown in Fig. 2, the inorganic complex molecules and the organic molecules are associated into a two-dimensional sheet along the [101] direction through O—H···O hydrogen bonds involving the coordinated aqua ligands (O3 and O4) and the carboxylate oxygen atoms (O1 and O2). Two O4 aqua ligands from different complex molecules and two O2 atoms from different organic molecules, form a hydrogen-bonded ring which can be denoted by the graph set R42(8) (Bernstein et al., 1995; Etter, 1990), and the carboxylate group forms a R22(8) hydrogen-bonded ring with two aqua ligands from the same complex molecule. The three-dimensional structure is formed via the hydrogen bonds between the disordered free water molecules (O5 and O5') and the terminal azide nitrogen (N4), the carboxylate oxygen (O2) or the coordinated water molecule (O3) (Fig. 3).

Experimental

The crystals was synthesized using the hydrothermal method in a 23 ml Teflon-lined Parr bomb. CoCl2.6H2O (0.0238 g, 0.1 mmol), 1,2-bis(4-carboxylatopyridinium)ethane (0.0434 g, 0.1 mmol), NaN3 (0.052 g, 0.8 mmol) and distilled water (3 ml) were placed into the bomb and sealed. The bomb was then heated in a 70°C oven for 3 d and allowed to cool to room temperature. The clear colorless solution was decanted to give sheet orange crystals. Yield: 71.7%. Elemental analysis: calculated for C14H24CoN8O10: C 32.13, H 4.62, N 21.41%; found: C 32.28, H 4.79, N 21.73%. IR (KBr, ν/cm-1): 2086, 1607, 1561, 1457, 1372, 1193, 1138, 1110, 1043, 782, 686.

Refinement

All hydrogen atoms attached to carbon atoms were placed at calculated positions and refined with the riding model using AFIX 43 and AFIX 23 instructions for aromatic C—H and secondary CH2. The water hydrogen atoms were initially located from difference Fourier maps and refined isotropically with restraints on O—H distance (0.85 Å) and H—O—H angle, and Uiso(H) = 1.5Ueq(O). The free water molecule is disordered over two positions with the occupancies being refined to be 0.79 (O5) and 0.21 (O5').

Figures

Fig. 1.
Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Part of the crystal structure of (I), showing the formation of the two-dimensional network by O—H···O hydrogen bonds which are shown in dashed lines. Hydrogen atoms not involved in the hydrogen bonds have been omitted for ...
Fig. 3.
The three-dimensional structure of (I) formed via O—H···O and O—H···N hydrogen-bonds which are shown as dashed lines.

Crystal data

[Co(N3)2(H2O)4]·C14H12N2O4·2H2OZ = 1
Mr = 523.34F(000) = 271
Triclinic, P1Dx = 1.655 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1951 (5) ÅCell parameters from 7436 reflections
b = 9.0354 (7) Åθ = 2.5–27.6°
c = 9.0915 (5) ŵ = 0.89 mm1
α = 71.402 (3)°T = 296 K
β = 85.568 (2)°Sheet, orange
γ = 69.752 (2)°0.08 × 0.08 × 0.02 mm
V = 525.20 (6) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer2029 independent reflections
Radiation source: fine-focus sealed tube2016 reflections with I > 2σ(I)
graphiteRint = 0.020
phi and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −7→8
Tmin = 0.932, Tmax = 0.982k = −11→11
6498 measured reflectionsl = −11→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089w = 1/[σ2(Fo2) + (0.0517P)2 + 0.2305P] where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
2029 reflectionsΔρmax = 0.34 e Å3
183 parametersΔρmin = −0.35 e Å3
13 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.072 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Co10.50000.50000.00000.02233 (16)
N1−0.0182 (2)0.06625 (19)0.78289 (17)0.0240 (3)
N20.5369 (3)0.4349 (3)0.2408 (2)0.0458 (5)
N30.4823 (2)0.3822 (2)0.36258 (18)0.0283 (4)
O30.4820 (2)0.26543 (17)0.02090 (16)0.0300 (3)
H310.425 (4)0.272 (3)−0.058 (2)0.045*
H320.420 (4)0.229 (3)0.099 (2)0.045*
O40.18626 (19)0.59340 (17)0.00759 (16)0.0298 (3)
H420.146 (4)0.535 (3)0.087 (2)0.045*
H410.135 (4)0.600 (3)−0.072 (2)0.045*
C10.1394 (3)0.2551 (3)0.3161 (2)0.0316 (4)
C20.0846 (3)0.1895 (2)0.4838 (2)0.0267 (4)
C30.1985 (3)0.0345 (2)0.5774 (2)0.0284 (4)
H3A0.3109−0.02880.53920.034*
C40.1448 (3)−0.0255 (2)0.7271 (2)0.0279 (4)
H4A0.2211−0.12980.79030.033*
C5−0.1306 (3)0.2167 (2)0.6939 (2)0.0322 (4)
H5A−0.24260.27790.73420.039*
C6−0.0818 (3)0.2812 (3)0.5435 (2)0.0335 (4)
H6A−0.16020.38590.48230.040*
C7−0.0719 (3)−0.0022 (2)0.9445 (2)0.0283 (4)
H7A−0.0663−0.11560.96360.034*
H7B−0.20610.06310.96070.034*
N40.4358 (4)0.3278 (3)0.4876 (2)0.0546 (6)
O10.2747 (3)0.1567 (2)0.26605 (18)0.0470 (4)
O20.0391 (2)0.4020 (2)0.24191 (17)0.0447 (4)
O50.2585 (3)0.2801 (3)0.7844 (2)0.0415 (7)0.787 (5)
H50.344 (3)0.244 (3)0.727 (3)0.062*
H510.193 (5)0.377 (3)0.760 (4)0.062*0.787 (5)
O5'0.4261 (18)0.1544 (12)0.7953 (9)0.059 (3)0.213 (5)
H520.506 (13)0.097 (6)0.744 (6)0.089*0.213 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0217 (2)0.0262 (2)0.0185 (2)−0.00944 (14)0.00190 (12)−0.00503 (13)
N10.0264 (7)0.0293 (8)0.0161 (7)−0.0115 (6)0.0029 (5)−0.0050 (6)
N20.0542 (12)0.0691 (13)0.0221 (9)−0.0363 (11)0.0023 (8)−0.0080 (8)
N30.0273 (8)0.0341 (8)0.0252 (9)−0.0110 (7)−0.0001 (6)−0.0105 (7)
O30.0309 (7)0.0337 (7)0.0279 (7)−0.0147 (6)0.0038 (5)−0.0096 (6)
O40.0256 (6)0.0341 (7)0.0267 (7)−0.0118 (5)0.0019 (5)−0.0041 (6)
C10.0371 (10)0.0469 (11)0.0172 (8)−0.0266 (9)−0.0001 (7)−0.0048 (8)
C20.0309 (9)0.0378 (10)0.0169 (8)−0.0208 (8)−0.0002 (7)−0.0058 (7)
C30.0308 (9)0.0330 (9)0.0230 (9)−0.0120 (8)0.0068 (7)−0.0108 (7)
C40.0299 (9)0.0262 (8)0.0231 (8)−0.0073 (7)0.0028 (7)−0.0048 (7)
C50.0291 (9)0.0329 (10)0.0260 (9)−0.0043 (8)0.0027 (7)−0.0052 (8)
C60.0327 (10)0.0333 (10)0.0248 (9)−0.0077 (8)−0.0026 (7)0.0008 (8)
C70.0322 (9)0.0345 (10)0.0163 (8)−0.0142 (8)0.0062 (7)−0.0037 (7)
N40.0637 (14)0.0823 (16)0.0274 (10)−0.0407 (13)0.0125 (9)−0.0150 (10)
O10.0690 (11)0.0510 (9)0.0277 (7)−0.0306 (9)0.0198 (7)−0.0143 (7)
O20.0378 (8)0.0585 (10)0.0247 (7)−0.0191 (7)0.0001 (6)0.0074 (7)
O50.0513 (14)0.0524 (13)0.0298 (10)−0.0267 (11)0.0064 (8)−0.0162 (9)
O5'0.107 (9)0.048 (5)0.029 (4)−0.031 (5)−0.014 (4)−0.011 (3)

Geometric parameters (Å, °)

Co1—N22.0903 (18)C1—C21.524 (2)
Co1—N2i2.0903 (18)C2—C31.382 (3)
Co1—O3i2.1152 (14)C2—C61.384 (3)
Co1—O32.1152 (14)C3—C41.375 (3)
Co1—O4i2.1230 (13)C3—H3A0.9300
Co1—O42.1230 (13)C4—H4A0.9300
N1—C51.340 (2)C5—C61.376 (3)
N1—C41.350 (2)C5—H5A0.9300
N1—C71.479 (2)C6—H6A0.9300
N2—N31.154 (2)C7—C7ii1.519 (4)
N3—N41.159 (3)C7—H7A0.9700
O3—H310.826 (16)C7—H7B0.9700
O3—H320.847 (16)O5—H50.824 (17)
O4—H420.846 (16)O5—H510.802 (17)
O4—H410.812 (16)O5'—H50.894 (17)
C1—O11.239 (3)O5'—H520.85 (2)
C1—O21.256 (3)
N2—Co1—N2i180.0O1—C1—O2126.83 (18)
N2—Co1—O3i89.06 (7)O1—C1—C2116.63 (18)
N2i—Co1—O3i90.94 (7)O2—C1—C2116.51 (18)
N2—Co1—O390.94 (7)C3—C2—C6118.98 (16)
N2i—Co1—O389.06 (7)C3—C2—C1120.08 (18)
O3i—Co1—O3180.00 (8)C6—C2—C1120.92 (18)
N2—Co1—O4i87.27 (7)C4—C3—C2119.67 (17)
N2i—Co1—O4i92.73 (7)C4—C3—H3A120.2
O3i—Co1—O4i88.65 (5)C2—C3—H3A120.2
O3—Co1—O4i91.35 (5)N1—C4—C3120.32 (17)
N2—Co1—O492.73 (7)N1—C4—H4A119.8
N2i—Co1—O487.27 (7)C3—C4—H4A119.8
O3i—Co1—O491.35 (5)N1—C5—C6120.57 (18)
O3—Co1—O488.65 (5)N1—C5—H5A119.7
O4i—Co1—O4180.00 (3)C6—C5—H5A119.7
C5—N1—C4120.90 (15)C5—C6—C2119.56 (18)
C5—N1—C7120.17 (15)C5—C6—H6A120.2
C4—N1—C7118.94 (15)C2—C6—H6A120.2
N3—N2—Co1148.27 (17)N1—C7—C7ii109.17 (18)
N2—N3—N4177.0 (2)N1—C7—H7A109.8
Co1—O3—H31109.2 (19)C7ii—C7—H7A109.8
Co1—O3—H32113.4 (18)N1—C7—H7B109.8
H31—O3—H32108 (2)C7ii—C7—H7B109.8
Co1—O4—H42111.1 (18)H7A—C7—H7B108.3
Co1—O4—H41110.5 (19)H5—O5—H51121 (3)
H42—O4—H41112 (2)H5—O5'—H52107 (3)
O3i—Co1—N2—N3129.7 (4)C5—N1—C4—C30.1 (3)
O3—Co1—N2—N3−50.3 (4)C7—N1—C4—C3179.88 (17)
O4i—Co1—N2—N3−141.6 (4)C2—C3—C4—N1−0.1 (3)
O4—Co1—N2—N338.4 (4)C4—N1—C5—C6−0.2 (3)
O1—C1—C2—C37.4 (3)C7—N1—C5—C6−179.94 (18)
O2—C1—C2—C3−174.40 (18)N1—C5—C6—C20.2 (3)
O1—C1—C2—C6−170.78 (19)C3—C2—C6—C5−0.1 (3)
O2—C1—C2—C67.4 (3)C1—C2—C6—C5178.15 (18)
C6—C2—C3—C40.0 (3)C5—N1—C7—C7ii−107.1 (2)
C1—C2—C3—C4−178.22 (17)C4—N1—C7—C7ii73.1 (3)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H31···O5iii0.83 (2)1.91 (2)2.727 (2)170 (2)
O3—H31···O5'iii0.83 (2)1.96 (2)2.664 (8)143 (3)
O4—H41···O2iv0.81 (2)2.07 (2)2.870 (2)167 (3)
O5—H51···O2v0.80 (2)2.11 (2)2.877 (3)160 (4)
O3—H32···O10.85 (2)1.85 (2)2.694 (2)178 (3)
O4—H42···O20.85 (2)1.85 (2)2.687 (2)172 (2)
O5—H5···N40.82 (2)2.19 (2)2.864 (3)139 (2)

Symmetry codes: (iii) x, y, z−1; (iv) −x, −y+1, −z; (v) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2309).

References

  • Baures, P. W., Caldwell, A. W., Cashman, C. R., Masse, M. T., Van Arnam, E. B. & Conry, R. R. (2006). Cryst. Growth Des 6, 2047–2052.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  • Braga, D. & Grepioni, F. (2000). Acc. Chem. Res 33, 601–608. [PubMed]
  • Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Etter, M. C. (1990). Acc. Chem. Res 23, 120–126.
  • Loeb, S. J., Tiburcio, J., Vella, S. J. & Wisner, J. A. (2006). Org. Biomol. Chem. 4, 667–680. [PubMed]
  • Maly, K. E., Maris, T. & Wuest, J. D. (2006). CrystEngComm, 8, 33–35.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography