PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3137.
Published online 2009 November 21. doi:  10.1107/S1600536809048752
PMCID: PMC2971758

3-(1-Naphth­yl)-N-phenyl­oxirane-2-carboxamide

Abstract

In the title compound, C19H15NO2, the mol­ecule adopts a syn configuration with the naphthalene and N-phenyl­formamide units located on the same side of the ep­oxy ring. The ep­oxy ring makes dihedral angles of 58.73 (9) and 65.18 (9)°, respectively, with the naphthalene ring system and the benzene ring. Inter­molecular N—H(...)O and C—H(...)O hydrogen bonding is present in the crystal structure.

Related literature

For background to the use of epoxide-containing compounds as building blocks in the synthesis of biologically active compounds, see: Porter & Skidmore (2000 [triangle]); Shing et al. (2006 [triangle]); Watanabe et al. (1998 [triangle]). For related structures, see: He (2009 [triangle]); He & Chen (2009 [triangle]); He et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3137-scheme1.jpg

Experimental

Crystal data

  • C19H15NO2
  • M r = 289.32
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3137-efi1.jpg
  • a = 6.62890 (10) Å
  • b = 10.03500 (10) Å
  • c = 23.2033 (3) Å
  • V = 1543.51 (3) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.65 mm−1
  • T = 290 K
  • 0.40 × 0.36 × 0.30 mm

Data collection

  • Oxford Diffraction Gemini S Ultra diffractometer
  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009 [triangle]) T min = 0.782, T max = 0.829
  • 13761 measured reflections
  • 1783 independent reflections
  • 1641 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.093
  • S = 1.08
  • 1783 reflections
  • 203 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.08 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809048752/xu2678sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048752/xu2678Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The diffraction data were collected at the Centre for Testing and Analysis, Sichuan University. We are grateful for financial support from China West Normal University (No 412374).

supplementary crystallographic information

Comment

α,β-Epoxides are very important building blocks for the synthesis of complex molecules, in particular, of biologically active compounds (Porter & Skidmore, 2000; Shing et al., 2006; Watanabe et al., 1998). Various effective systems have been developed over the years for the preparation of α,β-epoxides. The most common approach to access these molecules is the epoxidation of α,β-unsaturatd carbonyl compound. As a part of our interest in the synthsis of epoxides ring systems, we synthesis the title compound by using Darzens reaction. We report herein the crystal structure of the title compound.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. In the molecular, the 1-naphthyl ring with the phenyl ring adopts a cis configuration about the epoxides ring. The dihedral angle between the phenyl ring and the 1-naphthyl ring is 77.79 (4)°, O1/C8/C9 epoxide ring makes dihedral angles of 58.73 (9)° and 65.18 (9)° with the 1-naphthyl ring and phenyl ring, respectively. These values are very similar to those observed in related structures (He, 2009; He & Chen, 2009; He et al., 2009). The crystal packing is stabilized by N—H···0 and C—H···0 hydrogen bonding (Table 1).

Experimental

2-Chloro-N-phenylacetamide (0.085 g, 0.5 mmol) and potassium hydroxide (0.056 g, 1.0 mmol) were dissolved in chloroform (4 ml). To the solution was added 1-naphthaldehyde (0.094 g, 0.6 mmol) at 298 K, the solution was stirred for 6 h and removal of solvent under reduced pressure, the residue was purified through column chromatography. Colourless single crystals of (I) were obtained by recrystallization from an ethyl acetate solution.

Refinement

Imine H atom was located in a difference Fourier map and refined isotropically, with restrains of N—H = 0.84±1 Å. The carbon-bound hydrogen atoms were placed in calculated positions with C—H = 0.93–0.98 Å, and refined using a riding model with Uiso(H) =1.2Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.
The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Crystal data

C19H15NO2F(000) = 608
Mr = 289.32Dx = 1.245 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 9381 reflections
a = 6.6289 (1) Åθ = 3.8–72.1°
b = 10.0350 (1) ŵ = 0.65 mm1
c = 23.2033 (3) ÅT = 290 K
V = 1543.51 (3) Å3Block, colorless
Z = 40.40 × 0.36 × 0.30 mm

Data collection

Oxford Diffraction Gemini S Ultra diffractometer1783 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1641 reflections with I > 2σ(I)
mirrorRint = 0.031
Detector resolution: 15.9149 pixels mm-1θmax = 72.3°, θmin = 3.8°
ω scansh = −6→8
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −12→12
Tmin = 0.782, Tmax = 0.829l = −26→28
13761 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0641P)2 + 0.0314P] where P = (Fo2 + 2Fc2)/3
1783 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.08 e Å3
0 restraintsΔρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.20270 (19)0.10810 (12)0.82723 (5)0.0681 (3)
O21.0096 (2)0.38001 (11)0.74225 (7)0.0738 (4)
N10.8951 (2)0.16688 (13)0.74912 (6)0.0534 (3)
H40.926 (3)0.092 (2)0.7622 (8)0.065 (5)*
C10.3564 (3)0.1625 (3)0.65510 (8)0.0820 (6)
H10.23760.15920.63390.098*
C20.4104 (3)0.0578 (2)0.68938 (9)0.0750 (5)
H20.3275−0.01680.69170.090*
C30.5874 (3)0.06219 (17)0.72067 (8)0.0619 (4)
H30.6224−0.00900.74430.074*
C40.7135 (2)0.17226 (15)0.71700 (6)0.0521 (3)
C50.6590 (3)0.27941 (19)0.68282 (8)0.0659 (4)
H50.74110.35430.68040.079*
C60.4786 (3)0.2728 (2)0.65216 (9)0.0806 (6)
H60.44020.34450.62920.097*
C71.0258 (2)0.26612 (14)0.75961 (7)0.0523 (3)
C81.2046 (2)0.23071 (15)0.79612 (7)0.0558 (4)
H81.33590.25730.78050.067*
C91.1896 (2)0.23005 (17)0.85940 (8)0.0597 (4)
H91.31350.25550.87970.072*
C100.9999 (3)0.25565 (18)0.89182 (7)0.0588 (4)
C110.8539 (3)0.1600 (2)0.89662 (8)0.0738 (5)
H110.86890.07910.87760.089*
C120.6808 (3)0.1835 (3)0.93030 (9)0.0855 (7)
H120.58190.11810.93300.103*
C130.6567 (3)0.2994 (3)0.95855 (9)0.0854 (7)
H130.54140.31270.98070.103*
C140.8028 (3)0.4013 (2)0.95534 (7)0.0718 (5)
C150.9780 (3)0.38002 (19)0.92061 (7)0.0587 (4)
C161.1212 (3)0.4825 (2)0.91701 (8)0.0690 (4)
H161.23450.47100.89390.083*
C171.0979 (4)0.5988 (3)0.94673 (10)0.0880 (6)
H171.19380.66590.94320.106*
C180.9322 (5)0.6176 (3)0.98222 (11)0.1012 (8)
H180.92050.69561.00360.121*
C190.7874 (4)0.5231 (3)0.98595 (9)0.0927 (7)
H190.67520.53831.00910.111*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0674 (7)0.0523 (6)0.0846 (7)0.0119 (6)−0.0146 (6)−0.0057 (5)
O20.0694 (7)0.0412 (6)0.1109 (10)−0.0041 (6)−0.0195 (7)0.0016 (6)
N10.0506 (7)0.0396 (6)0.0700 (7)−0.0001 (5)−0.0054 (6)−0.0003 (6)
C10.0604 (10)0.1084 (17)0.0771 (11)0.0011 (11)−0.0134 (9)−0.0229 (12)
C20.0523 (9)0.0768 (12)0.0960 (13)−0.0071 (9)0.0031 (9)−0.0250 (11)
C30.0518 (8)0.0524 (8)0.0814 (10)−0.0007 (7)0.0049 (7)−0.0099 (8)
C40.0486 (8)0.0488 (7)0.0590 (8)0.0025 (7)0.0020 (6)−0.0085 (6)
C50.0660 (10)0.0609 (9)0.0707 (9)−0.0014 (8)−0.0075 (8)0.0042 (8)
C60.0768 (12)0.0928 (14)0.0722 (11)0.0095 (12)−0.0161 (10)0.0058 (10)
C70.0491 (8)0.0411 (7)0.0666 (8)0.0019 (6)−0.0003 (7)−0.0092 (6)
C80.0455 (7)0.0464 (7)0.0754 (9)0.0041 (7)−0.0016 (7)−0.0099 (7)
C90.0476 (8)0.0591 (8)0.0725 (9)0.0031 (7)−0.0106 (7)−0.0094 (7)
C100.0505 (8)0.0687 (9)0.0571 (8)0.0000 (8)−0.0086 (7)0.0031 (7)
C110.0653 (10)0.0803 (12)0.0757 (10)−0.0129 (10)−0.0124 (9)0.0083 (10)
C120.0612 (11)0.1093 (17)0.0859 (13)−0.0194 (13)−0.0057 (10)0.0263 (13)
C130.0564 (11)0.131 (2)0.0693 (10)0.0054 (12)0.0082 (9)0.0238 (12)
C140.0595 (10)0.1020 (14)0.0539 (8)0.0149 (11)0.0018 (7)0.0095 (9)
C150.0531 (8)0.0723 (10)0.0505 (7)0.0054 (8)−0.0034 (6)0.0030 (7)
C160.0660 (10)0.0751 (11)0.0658 (9)−0.0003 (9)−0.0002 (8)−0.0080 (9)
C170.0988 (16)0.0799 (13)0.0853 (12)−0.0038 (13)−0.0017 (12)−0.0181 (11)
C180.120 (2)0.1003 (17)0.0831 (13)0.0244 (18)0.0033 (14)−0.0278 (13)
C190.0897 (15)0.1226 (19)0.0658 (10)0.0355 (16)0.0118 (11)−0.0050 (12)

Geometric parameters (Å, °)

O1—C81.4266 (19)C9—C101.488 (2)
O1—C91.436 (2)C9—H90.9800
O2—C71.217 (2)C10—C111.367 (3)
N1—C71.342 (2)C10—C151.423 (2)
N1—C41.417 (2)C11—C121.408 (3)
N1—H40.84 (2)C11—H110.9300
C1—C21.365 (3)C12—C131.345 (4)
C1—C61.373 (3)C12—H120.9300
C1—H10.9300C13—C141.410 (3)
C2—C31.381 (3)C13—H130.9300
C2—H20.9300C14—C191.417 (4)
C3—C41.388 (2)C14—C151.429 (2)
C3—H30.9300C15—C161.402 (3)
C4—C51.384 (2)C16—C171.364 (3)
C5—C61.393 (3)C16—H160.9300
C5—H50.9300C17—C181.386 (4)
C6—H60.9300C17—H170.9300
C7—C81.499 (2)C18—C191.352 (4)
C8—C91.472 (2)C18—H180.9300
C8—H80.9800C19—H190.9300
C8—O1—C961.87 (10)O1—C9—H9114.9
C7—N1—C4127.99 (14)C8—C9—H9114.9
C7—N1—H4116.1 (15)C10—C9—H9114.9
C4—N1—H4115.8 (15)C11—C10—C15120.32 (16)
C2—C1—C6119.65 (18)C11—C10—C9121.23 (17)
C2—C1—H1120.2C15—C10—C9118.36 (15)
C6—C1—H1120.2C10—C11—C12120.3 (2)
C1—C2—C3120.29 (19)C10—C11—H11119.8
C1—C2—H2119.9C12—C11—H11119.8
C3—C2—H2119.9C13—C12—C11120.8 (2)
C2—C3—C4120.33 (18)C13—C12—H12119.6
C2—C3—H3119.8C11—C12—H12119.6
C4—C3—H3119.8C12—C13—C14121.31 (19)
C5—C4—C3119.75 (15)C12—C13—H13119.3
C5—C4—N1123.56 (15)C14—C13—H13119.3
C3—C4—N1116.68 (14)C13—C14—C19123.3 (2)
C4—C5—C6118.67 (18)C13—C14—C15118.65 (19)
C4—C5—H5120.7C19—C14—C15118.0 (2)
C6—C5—H5120.7C16—C15—C10123.11 (16)
C1—C6—C5121.3 (2)C16—C15—C14118.30 (18)
C1—C6—H6119.4C10—C15—C14118.59 (17)
C5—C6—H6119.4C17—C16—C15121.4 (2)
O2—C7—N1125.45 (15)C17—C16—H16119.3
O2—C7—C8118.66 (14)C15—C16—H16119.3
N1—C7—C8115.89 (13)C16—C17—C18120.5 (2)
O1—C8—C959.38 (10)C16—C17—H17119.8
O1—C8—C7118.91 (13)C18—C17—H17119.8
C9—C8—C7120.76 (13)C19—C18—C17120.4 (2)
O1—C8—H8115.4C19—C18—H18119.8
C9—C8—H8115.4C17—C18—H18119.8
C7—C8—H8115.4C18—C19—C14121.4 (2)
O1—C9—C858.75 (10)C18—C19—H19119.3
O1—C9—C10117.46 (15)C14—C19—H19119.3
C8—C9—C10124.10 (14)
C6—C1—C2—C3−0.4 (3)O1—C9—C10—C15−175.59 (13)
C1—C2—C3—C4−0.8 (3)C8—C9—C10—C15−106.34 (18)
C2—C3—C4—C51.5 (2)C15—C10—C11—C12−0.3 (3)
C2—C3—C4—N1−178.11 (15)C9—C10—C11—C12176.26 (16)
C7—N1—C4—C511.2 (2)C10—C11—C12—C13−0.5 (3)
C7—N1—C4—C3−169.22 (16)C11—C12—C13—C140.2 (3)
C3—C4—C5—C6−0.9 (3)C12—C13—C14—C19−177.7 (2)
N1—C4—C5—C6178.69 (16)C12—C13—C14—C150.8 (3)
C2—C1—C6—C51.0 (3)C11—C10—C15—C16−179.42 (17)
C4—C5—C6—C1−0.4 (3)C9—C10—C15—C164.0 (2)
C4—N1—C7—O2−0.7 (3)C11—C10—C15—C141.2 (2)
C4—N1—C7—C8179.01 (13)C9—C10—C15—C14−175.40 (14)
C9—O1—C8—C7−110.62 (15)C13—C14—C15—C16179.15 (17)
O2—C7—C8—O1165.96 (15)C19—C14—C15—C16−2.3 (2)
N1—C7—C8—O1−13.7 (2)C13—C14—C15—C10−1.5 (2)
O2—C7—C8—C996.3 (2)C19—C14—C15—C10177.07 (16)
N1—C7—C8—C9−83.36 (18)C10—C15—C16—C17−177.89 (18)
C8—O1—C9—C10115.07 (16)C14—C15—C16—C171.5 (3)
C7—C8—C9—O1107.55 (15)C15—C16—C17—C181.1 (4)
O1—C8—C9—C10−103.91 (18)C16—C17—C18—C19−2.7 (4)
C7—C8—C9—C103.6 (2)C17—C18—C19—C141.8 (4)
O1—C9—C10—C117.8 (2)C13—C14—C19—C18179.2 (2)
C8—C9—C10—C1177.1 (2)C15—C14—C19—C180.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H4···O2i0.84 (2)2.17 (2)2.954 (1)155.7 (18)
C5—H5···O1ii0.932.583.431 (2)153 (1)

Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) −x+2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2678).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • He, L. (2009). Acta Cryst. E65, o2052. [PMC free article] [PubMed]
  • He, L. & Chen, L.-M. (2009). Acta Cryst. E65, o2976. [PMC free article] [PubMed]
  • He, L., Qin, H.-M. & Chen, L.-M. (2009). Acta Cryst. E65, o2999. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.
  • Porter, M. J. & Skidmore, J. (2000). Chem. Commun. pp. 1215–1225.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shing, T. K. M., Luk, T. & Lee, C. M. (2006). Tetrahedron, 62, 6621–6629.
  • Watanabe, S., Arai, T., Sasai, H., Bougauchi, M. & Shibasaki, M. (1998). J. Org. Chem. 63, 8090–8091.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography