PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1688.
Published online 2009 November 28. doi:  10.1107/S1600536809050272
PMCID: PMC2971755

Bis(2-amino­benzonitrile)tetra­aqua­cobalt(II) dichloride

Abstract

In the crystal structure of the title compound, [Co(C7H6N2)2(H2O)4]Cl2, the CoII cation lies on an inversion center and is coordinated by two 2-amino­benzonitrile ligands and four water mol­ecules in a distorted octa­hedral geometry. The Cl counter-anion links with the complex cations via O—H(...)Cl and N—H(...)Cl hydrogen bonding. Inter­molecular O—H(...)N hydrogen bonding links the complex cations, forming supra­molecular chains running along the b axis.

Related literature

For the chemistry of nitrile derivatives, see: Jin et al. (1994 [triangle]); Brewis et al. (2003 [triangle]). For a related structure, see: Fu & Zhao (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1688-scheme1.jpg

Experimental

Crystal data

  • [Co(C7H6N2)2(H2O)4]Cl2
  • M r = 438.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1688-efi1.jpg
  • a = 12.492 (3) Å
  • b = 6.5864 (13) Å
  • c = 12.608 (3) Å
  • β = 109.24 (3)°
  • V = 979.4 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.17 mm−1
  • T = 298 K
  • 0.35 × 0.30 × 0.15 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.732, T max = 0.871
  • 9255 measured reflections
  • 2227 independent reflections
  • 1872 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.072
  • S = 1.13
  • 2227 reflections
  • 115 parameters
  • 4 restraints
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809050272/xu2671sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050272/xu2671Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Anyang Institute of Technology, China.

supplementary crystallographic information

Comment

Nitrile derivatives have found wide range of applications in industry and coordination chemistry as ligands. For example, phthalonitriles have been used as starting materials for phthalocyanines (Jin et al., 1994), which are important components for dyes, pigments, gas sensors, optical limiters and liquid crystals, and which are also used in medicine, as singlet oxygen photosensitisers for photodynamic therapy (Brewis et al., 2003). Recently, we have reported a few benzonitrile compounds (Fu & Zhao, 2007). As an extension of our work on the structural characterization, we report here the crystal structure of the title compound tetra-aqua-bis(2-aminobenzonitrile)-cobalt(II) dichloride.

The crystal data show that in the title compound, the Co(II) lies on an inversion center. The distorted octahedral Co(II) environment contains two N atoms from two planar trans-related 2-aminobenzonitrile ligands in the axial positions and four aqua O atoms in the equatorial plane. In the crystal, O—H···Cl, N—H···Cl and O—H···N hydrogen bonds generate an infinite two-dimensional network (Fig.1).

Experimental

A mixture of 2-aminobenzonitrile (0.1 mmol) and CoCl2 (0.1 mmol) and water (1 ml) sealed in a glass tube were maintained at 343 K. Crystals suitable for X-ray analysis were obtained after 5 d.

Refinement

H atoms attached to C atoms were located geometrically and treated as riding with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C). H atoms bonded to O and N atoms were located in a difference Fourier map and refined with distance restraints of O—H = 0.85±0.03 and N—H = 0.89±0.03 Å, Uiso(H) = 1.5Ueq(O,N).

Figures

Fig. 1.
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Crystal data

[Co(C7H6N2)2(H2O)4]Cl2F(000) = 450
Mr = 438.17Dx = 1.486 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1872 reflections
a = 12.492 (3) Åθ = 3.4–27.5°
b = 6.5864 (13) ŵ = 1.17 mm1
c = 12.608 (3) ÅT = 298 K
β = 109.24 (3)°Block, red
V = 979.4 (3) Å30.35 × 0.30 × 0.15 mm
Z = 2

Data collection

Rigaku Mercury2 diffractometer2227 independent reflections
Radiation source: fine-focus sealed tube1872 reflections with I > 2σ(I)
graphiteRint = 0.038
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scanh = −16→16
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −8→8
Tmin = 0.732, Tmax = 0.871l = −16→16
9255 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.0216P)2 + 0.2674P] where P = (Fo2 + 2Fc2)/3
2227 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.30 e Å3
4 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.00000.00000.50000.02435 (11)
Cl10.62659 (4)0.99536 (7)0.26701 (4)0.04265 (15)
O1W−0.10877 (11)0.0642 (2)0.33800 (10)0.0348 (3)
H1WA−0.17700.03080.32130.052*
H1WB−0.10140.18290.31370.052*
N20.26587 (14)0.6024 (3)0.55539 (14)0.0406 (4)
H2A0.25600.49910.59440.061*
H2B0.29970.71160.59900.061*
O2W0.03539 (12)−0.2770 (2)0.44423 (12)0.0469 (4)
H2WA0.1036−0.34090.47100.070*
H2WB−0.0087−0.34270.38540.070*
C70.33808 (16)0.3068 (3)0.33515 (15)0.0366 (4)
H70.32250.18080.30010.044*
C20.28925 (14)0.3621 (3)0.41754 (14)0.0281 (4)
C30.31432 (14)0.5491 (3)0.47396 (15)0.0292 (4)
N10.14159 (13)0.1374 (2)0.46523 (13)0.0365 (4)
C50.43102 (16)0.6305 (4)0.35985 (18)0.0451 (5)
H50.47740.72200.33930.054*
C40.38513 (16)0.6849 (3)0.44191 (17)0.0389 (5)
H40.40120.81160.47600.047*
C10.20887 (15)0.2307 (3)0.44319 (15)0.0297 (4)
C60.40921 (17)0.4417 (4)0.30739 (17)0.0436 (5)
H60.44240.40670.25390.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.02442 (18)0.02295 (18)0.02613 (18)−0.00363 (13)0.00896 (14)−0.00016 (13)
Cl10.0385 (3)0.0368 (3)0.0443 (3)−0.0048 (2)0.0024 (2)−0.0060 (2)
O1W0.0330 (7)0.0356 (7)0.0326 (7)−0.0032 (6)0.0067 (6)0.0048 (6)
N20.0416 (9)0.0438 (10)0.0384 (9)−0.0046 (8)0.0157 (8)−0.0119 (8)
O2W0.0411 (8)0.0367 (8)0.0517 (9)0.0072 (6)0.0001 (7)−0.0150 (7)
C70.0305 (10)0.0490 (12)0.0309 (10)0.0002 (9)0.0110 (8)−0.0040 (9)
C20.0214 (8)0.0363 (10)0.0270 (9)−0.0044 (8)0.0084 (7)0.0020 (8)
C30.0222 (9)0.0344 (10)0.0284 (9)0.0000 (7)0.0049 (7)0.0017 (7)
N10.0336 (8)0.0413 (9)0.0365 (9)−0.0094 (8)0.0139 (7)0.0002 (7)
C50.0287 (10)0.0601 (14)0.0461 (12)−0.0085 (10)0.0117 (9)0.0209 (11)
C40.0295 (10)0.0354 (10)0.0467 (12)−0.0068 (8)0.0058 (9)0.0047 (9)
C10.0286 (9)0.0333 (10)0.0270 (9)−0.0031 (8)0.0089 (8)−0.0022 (7)
C60.0325 (10)0.0703 (15)0.0325 (11)0.0001 (10)0.0167 (9)0.0073 (10)

Geometric parameters (Å, °)

Co1—O1W2.0899 (14)C7—C61.381 (3)
Co1—O1Wi2.0899 (14)C7—C21.415 (2)
Co1—O2W2.0550 (13)C7—H70.9300
Co1—O2Wi2.0550 (13)C2—C31.405 (3)
Co1—N12.1566 (15)C2—C11.441 (2)
Co1—N1i2.1566 (15)C3—C41.408 (3)
O1W—H1WA0.8377N1—C11.147 (2)
O1W—H1WB0.8551C5—C41.385 (3)
N2—C31.398 (2)C5—C61.392 (3)
N2—H2A0.8715C5—H50.9300
N2—H2B0.9196C4—H40.9300
O2W—H2WA0.9097C6—H60.9300
O2W—H2WB0.8784
O2W—Co1—O2Wi180.00 (8)Co1—O2W—H2WB125.5
O2W—Co1—O1W89.38 (5)H2WA—O2W—H2WB109.6
O2Wi—Co1—O1W90.62 (5)C6—C7—C2119.31 (19)
O2W—Co1—O1Wi90.62 (5)C6—C7—H7120.3
O2Wi—Co1—O1Wi89.38 (5)C2—C7—H7120.3
O1W—Co1—O1Wi180.00 (5)C3—C2—C7121.28 (16)
O2W—Co1—N191.13 (6)C3—C2—C1117.92 (15)
O2Wi—Co1—N188.87 (6)C7—C2—C1120.75 (17)
O1W—Co1—N191.66 (6)N2—C3—C2120.91 (16)
O1Wi—Co1—N188.34 (6)N2—C3—C4121.11 (17)
O2W—Co1—N1i88.87 (6)C2—C3—C4117.90 (17)
O2Wi—Co1—N1i91.13 (6)C1—N1—Co1171.82 (16)
O1W—Co1—N1i88.34 (6)C4—C5—C6121.43 (18)
O1Wi—Co1—N1i91.66 (6)C4—C5—H5119.3
N1—Co1—N1i180.0C6—C5—H5119.3
Co1—O1W—H1WA118.2C5—C4—C3120.27 (19)
Co1—O1W—H1WB115.0C5—C4—H4119.9
H1WA—O1W—H1WB111.8C3—C4—H4119.9
C3—N2—H2A113.3N1—C1—C2175.48 (19)
C3—N2—H2B114.3C7—C6—C5119.73 (18)
H2A—N2—H2B113.3C7—C6—H6120.1
Co1—O2W—H2WA124.4C5—C6—H6120.1

Symmetry codes: (i) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···Cl1ii0.842.333.1600 (16)170
O1W—H1WB···Cl1iii0.862.273.1099 (15)167
O2W—H2WA···N2iv0.911.992.868 (2)162
O2W—H2WB···Cl1v0.882.273.1438 (17)178
N2—H2B···Cl1vi0.922.533.4433 (18)172

Symmetry codes: (ii) x−1, y−1, z; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x, y−1, z; (v) −x+1/2, y−3/2, −z+1/2; (vi) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2671).

References

  • Brewis, M., Helliwell, M. & McKeown, N. B. (2003). Tetrahedron, 59, 3863–3872.
  • Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.
  • Jin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem. 468, 205–212.
  • Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography