PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1661–m1662.
Published online 2009 November 21. doi:  10.1107/S160053680904923X
PMCID: PMC2971753

Bis(2-amino-6-methyl­pyridinium) tetra­chloridocuprate(II)

Abstract

The title compound, (C6H9N2)2[CuCl4], contains a distorted tetra­hedral [CuCl4]2− anion and two protonated amino­pyridinium cations. The geometries of the protonated amino­pyridinium cations reveal amine–imine tautomerism. The crystal packing is influenced by N—H(...)Cl and C—H(...)Cl hydrogen bonds and π–π stacking inter­actions [centroid–centroid distances = 3.635 (4) and 3.642 (4)°].

Related literature

For a series of compounds with formula A2[MX 4], where A is an organic cation, usually a protonted base, M is a divalent transition metal ion and X is a halide (Cl, Br), see: Hammar et al. (1997 [triangle]). For complexes in which A is a protonated alkyl­amine, see: Zhou & Drumheller (1990 [triangle]), a heterocycle such as pyridine, see: Place & Willett (1987 [triangle]), 2-amino­pyrimidine, see: Zanchini & Willett (1990 [triangle]) and 2-amino-3-methyl­pridine, see: Coffey et al. (2000 [triangle]). For bond lengths and angles in related structures, see: Antolini et al. (1988 [triangle]); Zhang et al. (2005 [triangle]); Jin, Shun et al. (2005 [triangle]); Feng et al. (2007 [triangle]); Nahringbauer & Kvick (1977 [triangle]). For other 2-amino­pyridinium structures, see: Luque et al. (1997 [triangle]); Jin et al. (2000 [triangle], 2001 [triangle]); Jin, Tu et al. (2005 [triangle]). For studies on the tautomeric forms of 2-aminopyridine systems, see: Inuzuka & Fujimoto (1986 [triangle], 1990 [triangle]); Ishikawa et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1661-scheme1.jpg

Experimental

Crystal data

  • (C6H9N2)2[CuCl4]
  • M r = 423.65
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1661-efi1.jpg
  • a = 7.7466 (17) Å
  • b = 8.0372 (18) Å
  • c = 14.969 (3) Å
  • α = 78.922 (4)°
  • β = 82.154 (4)°
  • γ = 89.911 (4)°
  • V = 905.8 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.79 mm−1
  • T = 273 K
  • 0.35 × 0.34 × 0.30 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.549, T max = 0.578
  • 4783 measured reflections
  • 3161 independent reflections
  • 2874 reflections with I > 2σ(I)
  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.090
  • S = 1.05
  • 3161 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680904923X/kp2235sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904923X/kp2235Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful for the financial support of the Natural Science Foundation of Tibet (2009-10-12) and the Natural Science Foundation of the Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education (2009-11-12).

supplementary crystallographic information

Comment

There are a series of compounds of the formula A2[MX4], where A is an organic cation, usually a protonted base, M is a divalent transition metal ion and X is a halide (Cl, Br) (Hammar et al., 1997). A wide variety of these complexes are known where the A-group is a protonated alkylamine (Zhou et al., 1990), heterocycle such as pyridine (Place et al., 1987), 2-aminopyrimidine (Zanchini et al., 1990), or 2-amino-3-methylpridine (Coffey et al., 2000). The crystal structure of the title compound, (I), is now subjected to X-ray structure analysis.

The asymmetric unit comprises the two protonated, 2-amino-6-methyl-pyridinium cations (HAMP) and [CuCl4]2- anion (Fig. 1, Table1). The dihedral angle of the two HAMP cations is of 97.0 (3)°. The [CuCl4]2- anion assumes a distorted tetrahedral geometry consistent with the anticipated by Jahn–Teller effect documented by the value of the trans Cl—Cu—Cl angle and also by the dihedral angle between CuCl2 planes. In the present structure, the two independent trans angles are 132.57 (4)° and 129.70 (4)° and the dihedral angle between the CuCl2 planes is 65.4°. The average value of 2.2365Å observed in the [CuCl4]2- anion is shorter than the average value of 2.270Å (Antolini et al., 1988) or 2.260Å (Zhang et al., 2005) of square planar [CuCl4]2-anion. In the cation, the N3—C7 bond [1.330 (4) Å] is shorter than the N4—C7 [1.345 (4) Å] and N4—C11 [1.362 (4) Å] bonds, and the C7—C8 [1.394 (4) Å] and C(9)—C(10) [1.399 (5) Å] bonds are significantly longer than C8—C9 [1.345 (5) Å] and C10—C11 [1.348 (4) Å] bonds, this are similar to those in the HAMP cation of (C6H9N2)[ZnCl3(C6H8N2)] (Jin et al., 2005) and (C6H9N2)2[Sb2Cl6O] (Feng et al., 2007). In contrast, in the solid state structure of AMP, the N—C bond out of ring is clearly longer than that in the ring (Nahringbauer et al., 1997). The geometric features of HAMP cation (N1/N2/C1/C6) resemble those observed in other 2-aminopyridinium structures (Luque et al., 1997; Jin et al., 2000; Jin et al., 2001; Jin et al., 2005) that are believed to be involved in amine-imine tautomerism (Inuzuka et al., 1986; Inuzuka et al., 1990; Ishikawa et al., 2002). Similar features are also provided by cation HAMP (N3/N4/C7/C12). The crystal packing is determined by hydrogen bonds (Fig. 2 and Table 2) and π–π stacking interactions. The X1A···X1Ai separation (X1A is the centroid of the C1C5 ring, symmetry code: 1 - x, 1 - y, 1 - z) is of 3.635 (4)°, and the X1B···X1Bi separation (X1B is the centroid of the C7C11 ring, symmetry code: 1 - x, 2 - y, 2 - z) is of 3.642 (4)°.

Experimental

2-Amino-6-methyl-pyridine, aqueous HCl and CuCl2.2H2O in a molar ratio of 2:2:1 were mixed and dissolved in sufficient water. It was kept stirring and heating till a clear solution was obtained. Crystals of (I) were formed by gradual evaporation of excess water over one week at 293 K. Analysis for (I) (%): C 34.06; H 4.25; N, 13.27; Found (%): C 34.02; H 4.28; N 13.22. IR Spectrum (KBr, cm-1): 3411 (s), 3295 (s), 3195 (m), 3090 (m), 1656 (versus), 1630 (w), 1565 (w), 1474 (w), 1392 (m), 1309 (m), 1174 (w), 1042 (w), 997 (w), 793 (m), 715 (w), 612 (w), 564 (w), 421 (m).

Refinement

All the H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.93 Å for aromatic group, 0.86 Å for amido and 0.96 Å for methyl with isotropic displacement parameters 1.2 times Ueq of the parent atoms.

Figures

Fig. 1.
The molecular structure of (I).
Fig. 2.
A packing diagram viewed down along the b axis. Hydrogen bonds are illustrated as thin lines.

Crystal data

(C6H9N2)2[CuCl4]Z = 2
Mr = 423.65F(000) = 430.0
Triclinic, P1Dx = 1.553 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7466 (17) ÅCell parameters from 2451 reflections
b = 8.0372 (18) Åθ = 2.2–24.3°
c = 14.969 (3) ŵ = 1.79 mm1
α = 78.922 (4)°T = 273 K
β = 82.154 (4)°Prism, blue
γ = 89.911 (4)°0.35 × 0.34 × 0.30 mm
V = 905.8 (3) Å3

Data collection

Bruker SMART APEX area-detector diffractometer3206 independent reflections
Radiation source: fine-focus sealed tube3161 reflections with I > 2σ(I)
graphiteRint = 0.013
[var phi] and ω scanθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −7→9
Tmin = 0.549, Tmax = 0.578k = −9→9
4783 measured reflectionsl = −12→17

Refinement

Refinement on f2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0481P)2 + 0.406P] where P = (Fo2 + 2Fc2)/3
3161 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. all e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. the cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. an approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. refinement of f2 against all reflections. the weighted r-factor wr and goodness of fit s are based on f2, conventional r-factors r are based on f, with f set to zero for negative f2. the threshold expression of f2 > σ(f2) is used only for calculating r-factors(gt) etc. and is not relevant to the choice of reflections for refinement. r-factors based on f2 are statistically about twice as large as those based on f, and r- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
cu10.18139 (4)0.80739 (4)0.75385 (2)0.04615 (13)
cl40.31507 (11)0.56448 (9)0.80270 (5)0.0630 (2)
cl10.04761 (10)0.98881 (10)0.83451 (6)0.0677 (2)
cl30.41383 (10)0.96162 (10)0.68092 (7)0.0757 (3)
cl2−0.04646 (10)0.69927 (13)0.70434 (6)0.0734 (3)
n40.4134 (3)0.7120 (3)0.97401 (16)0.0498 (5)
h40.37250.67150.93180.060*
c80.6468 (4)0.8324 (4)1.0262 (2)0.0575 (7)
h80.76130.87331.01720.069*
c10.2333 (4)0.4070 (3)0.56633 (19)0.0506 (6)
n20.1895 (3)0.5691 (3)0.54343 (16)0.0506 (5)
h20.13280.61490.58550.061*
c110.3066 (4)0.7100 (4)1.0545 (2)0.0532 (7)
c90.5450 (5)0.8298 (4)1.1068 (2)0.0646 (8)
h90.59060.86791.15380.077*
c100.3717 (4)0.7707 (4)1.1212 (2)0.0641 (8)
h100.30170.77331.17660.077*
c50.2289 (4)0.6664 (4)0.4578 (2)0.0574 (7)
n10.1881 (4)0.3267 (3)0.65263 (19)0.0753 (8)
h1a0.13210.37900.69220.090*
h1b0.21480.22240.66900.090*
c20.3220 (4)0.3304 (4)0.4975 (2)0.0610 (8)
h2a0.35390.21770.51040.073*
c30.3598 (4)0.4236 (5)0.4123 (2)0.0720 (10)
h30.41660.37350.36580.086*
c120.1255 (4)0.6423 (5)1.0599 (3)0.0741 (9)
h12a0.11200.60671.00350.111*
h12b0.04400.72941.06960.111*
h12c0.10380.54741.11020.111*
n30.6670 (4)0.7728 (4)0.8737 (2)0.0784 (8)
h3a0.61830.73420.83330.094*
h3b0.77280.81120.86070.094*
c40.3162 (4)0.5927 (5)0.3920 (2)0.0704 (9)
h4a0.34710.65540.33290.084*
c60.1734 (5)0.8456 (4)0.4464 (3)0.0841 (11)
h6a0.11390.86580.50370.126*
h6b0.09650.86680.40050.126*
h6c0.27410.92000.42740.126*
c70.5786 (3)0.7731 (3)0.9564 (2)0.0513 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
cu10.04167 (19)0.0479 (2)0.0488 (2)0.00113 (13)0.00015 (14)−0.01383 (14)
cl40.0799 (5)0.0468 (4)0.0649 (5)0.0114 (3)−0.0143 (4)−0.0143 (3)
cl10.0553 (4)0.0672 (5)0.0843 (6)−0.0018 (3)0.0113 (4)−0.0387 (4)
cl30.0564 (4)0.0628 (5)0.0938 (6)−0.0028 (3)0.0196 (4)−0.0012 (4)
cl20.0468 (4)0.1114 (7)0.0754 (5)−0.0016 (4)−0.0041 (4)−0.0547 (5)
n40.0454 (12)0.0522 (13)0.0532 (13)0.0017 (10)−0.0052 (10)−0.0151 (10)
c80.0479 (15)0.0499 (15)0.075 (2)0.0064 (12)−0.0217 (15)−0.0052 (14)
c10.0541 (15)0.0491 (15)0.0523 (16)−0.0018 (12)−0.0095 (12)−0.0177 (12)
n20.0494 (13)0.0517 (13)0.0511 (13)−0.0010 (10)0.0017 (10)−0.0171 (10)
c110.0483 (15)0.0512 (15)0.0540 (16)0.0060 (12)−0.0003 (13)0.0003 (13)
c90.078 (2)0.0630 (19)0.0567 (18)0.0104 (16)−0.0305 (17)−0.0069 (15)
c100.071 (2)0.074 (2)0.0435 (15)0.0107 (16)−0.0065 (14)−0.0028 (14)
c50.0474 (15)0.0672 (18)0.0556 (17)−0.0057 (13)−0.0081 (13)−0.0059 (14)
n10.106 (2)0.0559 (15)0.0605 (17)0.0022 (14)−0.0031 (15)−0.0076 (13)
c20.0581 (17)0.0664 (18)0.071 (2)0.0108 (14)−0.0178 (15)−0.0373 (16)
c30.0570 (18)0.110 (3)0.060 (2)0.0061 (18)−0.0058 (15)−0.045 (2)
c120.0543 (18)0.081 (2)0.079 (2)−0.0058 (16)0.0037 (16)−0.0056 (18)
n30.0528 (15)0.102 (2)0.082 (2)−0.0050 (14)0.0126 (14)−0.0362 (17)
c40.0624 (19)0.100 (3)0.0455 (17)−0.0032 (18)−0.0046 (14)−0.0077 (17)
c60.078 (2)0.065 (2)0.097 (3)−0.0018 (18)−0.004 (2)0.007 (2)
c70.0410 (14)0.0475 (14)0.0647 (18)0.0082 (11)−0.0025 (13)−0.0124 (13)

Geometric parameters (Å, °)

Cu1—Cl32.2183 (9)c10—h100.9300
Cu1—Cl12.2333 (8)c5—c41.348 (5)
Cu1—Cl22.2426 (9)c5—c61.488 (5)
Cu1—Cl42.2517 (9)n1—h1a0.8600
N4—C71.345 (4)n1—h1b0.8600
N4—C111.362 (4)c2—c31.343 (5)
n4—h40.8600c2—h2a0.9300
c8—c91.345 (5)c3—c41.386 (5)
c8—c71.394 (4)c3—h30.9300
c8—h80.9300c12—h12a0.9600
C1—N11.328 (4)c12—h12b0.9600
C1—N21.337 (4)c12—h12c0.9600
c1—c21.401 (4)N3—C71.330 (4)
N2—C51.363 (4)n3—h3a0.8600
n2—h20.8600n3—h3b0.8600
c11—c101.348 (4)c4—h4a0.9300
c11—c121.492 (4)c6—h6a0.9600
c9—c101.399 (5)c6—h6b0.9600
c9—h90.9300c6—h6c0.9600
cl3—cu1—cl1100.96 (4)c1—n1—h1a120.0
cl3—cu1—cl2132.57 (4)c1—n1—h1b120.0
cl1—cu1—cl2100.71 (3)h1a—n1—h1b120.0
cl3—cu1—cl498.61 (4)c3—c2—c1118.4 (3)
cl1—cu1—cl4129.70 (4)c3—c2—h2a120.8
cl2—cu1—cl499.05 (4)c1—c2—h2a120.8
c7—n4—c11124.2 (3)c2—c3—c4121.6 (3)
c7—n4—h4117.9c2—c3—h3119.2
c11—n4—h4117.9c4—c3—h3119.2
c9—c8—c7119.2 (3)c11—c12—h12a109.5
c9—c8—h8120.4c11—c12—h12b109.5
c7—c8—h8120.4h12a—c12—h12b109.5
n1—c1—n2118.3 (3)c11—c12—h12c109.5
n1—c1—c2123.6 (3)h12a—c12—h12c109.5
n2—c1—c2118.1 (3)h12b—c12—h12c109.5
c1—n2—c5124.3 (2)c7—n3—h3a120.0
c1—n2—h2117.8c7—n3—h3b120.0
c5—n2—h2117.8h3a—n3—h3b120.0
c10—c11—n4117.9 (3)c5—c4—c3120.1 (3)
c10—c11—c12125.8 (3)c5—c4—h4a119.9
n4—c11—c12116.4 (3)c3—c4—h4a119.9
c8—c9—c10121.2 (3)c5—c6—h6a109.5
c8—c9—h9119.4c5—c6—h6b109.5
c10—c9—h9119.4h6a—c6—h6b109.5
c11—c10—c9119.7 (3)c5—c6—h6c109.5
c11—c10—h10120.2h6a—c6—h6c109.5
c9—c10—h10120.2h6b—c6—h6c109.5
c4—c5—n2117.3 (3)n3—c7—n4118.2 (3)
c4—c5—c6126.2 (3)n3—c7—c8124.0 (3)
n2—c5—c6116.4 (3)n4—c7—c8117.8 (3)
n1—c1—n2—c5179.5 (3)n1—c1—c2—c3179.5 (3)
c2—c1—n2—c5−1.6 (4)n2—c1—c2—c30.5 (4)
c7—n4—c11—c10−1.1 (4)c1—c2—c3—c41.2 (5)
c7—n4—c11—c12178.0 (3)n2—c5—c4—c31.0 (5)
c7—c8—c9—c10−0.8 (4)c6—c5—c4—c3−180.0 (3)
n4—c11—c10—c9−1.3 (4)c2—c3—c4—c5−2.1 (5)
c12—c11—c10—c9179.8 (3)c11—n4—c7—n3−177.7 (3)
c8—c9—c10—c112.2 (5)c11—n4—c7—c82.5 (4)
c1—n2—c5—c40.8 (4)c9—c8—c7—n3178.8 (3)
c1—n2—c5—c6−178.3 (3)c9—c8—c7—n4−1.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl40.862.933.453 (4)121.4
N1—H1A···Cl20.862.953.655 (4)141.1
N1—H1B···Cl3i0.862.603.399 (4)156.6
N1—H1B···Cl1i0.862.953.511 (4)125.0
N3—H3B···Cl1ii0.862.513.347 (4)165.5
N3—H3B···Cl2ii0.862.863.277 (4)112.0
N2—H2···Cl20.862.313.162 (4)171.0
N3—H3A···Cl40.862.853.585 (4)144.3
N4—H4···Cl40.862.363.204 (4)169.3
C6—H6C···Cl3iii0.962.783.670 (4)154.7
C12—H12B···Cl1iv0.962.943.781 (4)146.5

Symmetry codes: (i) x, y−1, z; (ii) x+1, y, z; (iii) −x+1, −y+2, −z+1; (iv) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2235).

References

  • Antolini, L., Benedetti, A., Fabretti, A. C. & Giusti, A. (1988). Inorg. Chem. 27, 2192–2194.
  • Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Coffey, T. J., Landee, C. P., Robinson, W. T., Turnbull, M. M., Winn, M. & Woodward, F. M. (2000). Inorg. Chim. Acta, 303, 54–60.
  • Feng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. & Jin, Z.-M. (2007). Acta Cryst. E63, m1786–m1787.
  • Hammar, P. R., Dender, D. C., Reich, D. H., Albrecht, A. & Landee, C. P. (1997). J. Appl. Phys. 81, 4615–4617.
  • Inuzuka, K. & Fujimoto, A. (1986). Spectrochim. Acta A, 42, 929–937.
  • Inuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 971–975.
  • Ishikawa, H., Iwata, K. & Hamaguchi, H. (2002). J. Phys. Chem. A, 106, 2305–2312.
  • Jin, Z.-M., Pan, Y.-J., Hu, M.-L. & Shen, L. (2001). J. Chem. Crystallogr. 31, 191–195.
  • Jin, Z.-M., Pan, Y.-J., Liu, J.-G. & Xu, D.-J. (2000). J. Chem. Crystallogr. 30, 195–198.
  • Jin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43–m45. [PubMed]
  • Jin, Z.-M., Tu, B., He, L., Hu, M.-L. & Zou, J.-W. (2005). Acta Cryst. C61, m197–m199. [PubMed]
  • Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854.
  • Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.
  • Place, H. & Willett, R. D. (1987). Acta Cryst. C43, 1497–1500.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zanchini, C. & Willett, R. D. (1990). Inorg. Chem. 29, 3027–3030.
  • Zhang, J., Ye, L., Yu, J.-S. & Wu, L.-X. (2005). Acta Cryst. E61, m1633–m1634.
  • Zhou, P. & Drumheller, J. E. (1990). J. Appl. Phys. 67, 5755–5757.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography