PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3264.
Published online 2009 November 28. doi:  10.1107/S1600536809050466
PMCID: PMC2971752

Methyl 1-bromo-2-naphthoate

Abstract

In the mol­ecular structure of the title compound, C12H9BrO2, the methoxy­carbonyl group is twisted by a dihedral angle of 29.8 (3)°with respect to the naphthalene ring system. An overlapped arrangement is observed between parallel naphthalene ring systems of adjacent mol­ecules, and the face-to-face distance of 3.590 (9) Å suggests there is π–π stacking in the crystal structure.

Related literature

For the chemistry of naphthoate derivatives, see: Ballabh et al. (2005 [triangle]); Imai et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3264-scheme1.jpg

Experimental

Crystal data

  • C12H9BrO2
  • M r = 265.10
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3264-efi1.jpg
  • a = 9.3614 (19) Å
  • b = 9.3014 (19) Å
  • c = 12.069 (2) Å
  • β = 93.66 (3)°
  • V = 1048.7 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.89 mm−1
  • T = 298 K
  • 0.4 × 0.35 × 0.2 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.881, T max = 0.940
  • 10520 measured reflections
  • 2400 independent reflections
  • 1751 reflections with I > 2σ(I)
  • R int = 0.086

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.127
  • S = 1.06
  • 2400 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809050466/xu2693sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050466/xu2693Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Anyang Institute of Technology, China.

supplementary crystallographic information

Comment

Naphthoate derivatives are an important class of chemical raw materials, which have found wide range of applications in catalytic reaction, coordination chemistry as ligand, dye industry, and which are also used in medicine as drugs, such as adapalene. Recently, a series of naphthoate compounds have been reported (Ballabh et al., 2005; Imai et al., 2006). As an extension of these work on the structural characterization, we report here the crystal structure of the title compound methyl 1-bromo-2-naphthoate.

The crystal data show that in the title compound (Fig.1), the two benzene rings are essentially coplanar and only twisted from each other by a dihedral angle of 1.11 (2)°. All the bond length are within the normal range. An overlapped arrangement is observed between parallel naphthalene ring systems of adjacent molecules, and the face-to-face distance of 3.590 (9) Å suggests there is π–π stacking in the crystal structure.

Experimental

The purchased 1-bromo-2-naphthoate (3 mmol, 795 mg) was dissolved in chloroform (20 ml) and evaporated in the air affording colorless block crystals of this compound suitable for X-ray analysis were obtained.

Refinement

All H atoms bonded to C atoms were fixed geometrically and treated as riding with C–H = 0.93 Å(aromatic), C–H =0.96 Å(methyl), with Uiso(H) = 1.2Ueq(aromatic) and Uiso(H) = 1.5Ueq(methyl).

Figures

Fig. 1.
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Crystal data

C12H9BrO2F(000) = 528
Mr = 265.10Dx = 1.679 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1751 reflections
a = 9.3614 (19) Åθ = 3.1–27.5°
b = 9.3014 (19) ŵ = 3.89 mm1
c = 12.069 (2) ÅT = 298 K
β = 93.66 (3)°Block, colourless
V = 1048.7 (4) Å30.4 × 0.35 × 0.2 mm
Z = 4

Data collection

Rigaku Mercury2 diffractometer2400 independent reflections
Radiation source: fine-focus sealed tube1751 reflections with I > 2σ(I)
graphiteRint = 0.086
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = −12→12
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −12→12
Tmin = 0.881, Tmax = 0.940l = −15→15
10520 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.053P)2] where P = (Fo2 + 2Fc2)/3
2400 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = −0.50 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.29147 (5)0.80840 (4)0.47073 (3)0.0664 (2)
C20.4234 (4)0.6858 (3)0.4033 (3)0.0450 (8)
C10.5663 (4)0.6855 (3)0.4501 (3)0.0485 (9)
C40.4815 (4)0.5034 (4)0.2735 (3)0.0553 (9)
H40.45330.44100.21590.066*
C30.3790 (4)0.5986 (3)0.3159 (3)0.0471 (8)
C50.6197 (5)0.5021 (4)0.3156 (3)0.0608 (10)
H50.68490.44050.28520.073*
C60.6655 (4)0.5916 (4)0.4039 (3)0.0512 (9)
C100.6150 (5)0.7727 (4)0.5411 (3)0.0596 (10)
H100.55170.83470.57330.072*
C90.7542 (5)0.7662 (5)0.5817 (4)0.0715 (12)
H90.78420.82390.64170.086*
C80.8523 (5)0.6753 (5)0.5355 (5)0.0774 (14)
H80.94680.67300.56420.093*
C120.0587 (5)0.4584 (5)0.1631 (4)0.0812 (13)
H12A0.03940.35880.14750.122*
H12B0.05310.51200.09500.122*
H12C−0.01070.49480.21120.122*
C70.8094 (5)0.5901 (5)0.4484 (4)0.0699 (12)
H70.87540.52980.41740.084*
C110.2313 (4)0.5993 (4)0.2617 (3)0.0552 (9)
O10.1996 (3)0.4727 (3)0.2164 (2)0.0678 (7)
O20.1531 (4)0.7005 (3)0.2538 (3)0.0835 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0647 (3)0.0697 (3)0.0652 (3)0.02213 (19)0.0071 (2)−0.01421 (18)
C20.050 (2)0.0373 (17)0.0492 (19)0.0072 (14)0.0111 (17)0.0042 (14)
C10.052 (2)0.0429 (19)0.051 (2)0.0000 (16)0.0059 (18)0.0077 (15)
C40.062 (3)0.049 (2)0.056 (2)0.0044 (18)0.0101 (19)−0.0056 (17)
C30.050 (2)0.0426 (18)0.0495 (19)0.0051 (15)0.0090 (17)0.0060 (15)
C50.062 (3)0.055 (2)0.067 (2)0.012 (2)0.016 (2)−0.0015 (19)
C60.048 (2)0.047 (2)0.059 (2)0.0036 (16)0.0093 (18)0.0099 (16)
C100.058 (3)0.052 (2)0.068 (3)−0.0023 (18)−0.003 (2)−0.0026 (18)
C90.073 (3)0.065 (3)0.075 (3)−0.004 (2)−0.006 (3)−0.002 (2)
C80.054 (3)0.079 (3)0.098 (4)−0.004 (2)−0.010 (3)0.015 (3)
C120.073 (3)0.085 (3)0.083 (3)−0.014 (2)−0.016 (3)−0.009 (2)
C70.053 (3)0.070 (3)0.087 (3)0.012 (2)0.011 (2)0.010 (2)
C110.058 (2)0.055 (2)0.053 (2)−0.0032 (19)0.0025 (18)−0.0014 (17)
O10.0675 (19)0.0576 (16)0.0759 (18)−0.0024 (14)−0.0136 (15)−0.0074 (14)
O20.067 (2)0.0716 (19)0.109 (2)0.0204 (15)−0.0172 (19)−0.0198 (16)

Geometric parameters (Å, °)

Br1—C21.901 (3)C10—H100.9300
C2—C31.374 (5)C9—C81.390 (7)
C2—C11.418 (5)C9—H90.9300
C1—C61.415 (5)C8—C71.357 (6)
C1—C101.417 (5)C8—H80.9300
C4—C51.360 (5)C12—O11.436 (5)
C4—C31.425 (5)C12—H12A0.9600
C4—H40.9300C12—H12B0.9600
C3—C111.491 (5)C12—H12C0.9600
C5—C61.398 (5)C7—H70.9300
C5—H50.9300C11—O21.193 (4)
C6—C71.418 (5)C11—O11.324 (4)
C10—C91.364 (6)
C3—C2—C1122.4 (3)C1—C10—H10119.8
C3—C2—Br1120.7 (3)C10—C9—C8121.5 (4)
C1—C2—Br1116.9 (2)C10—C9—H9119.2
C6—C1—C10118.1 (4)C8—C9—H9119.2
C6—C1—C2118.1 (3)C7—C8—C9119.7 (4)
C10—C1—C2123.8 (3)C7—C8—H8120.1
C5—C4—C3121.1 (3)C9—C8—H8120.1
C5—C4—H4119.4O1—C12—H12A109.5
C3—C4—H4119.4O1—C12—H12B109.5
C2—C3—C4117.8 (3)H12A—C12—H12B109.5
C2—C3—C11124.1 (3)O1—C12—H12C109.5
C4—C3—C11118.1 (3)H12A—C12—H12C109.5
C4—C5—C6121.2 (4)H12B—C12—H12C109.5
C4—C5—H5119.4C8—C7—C6121.0 (4)
C6—C5—H5119.4C8—C7—H7119.5
C5—C6—C1119.4 (4)C6—C7—H7119.5
C5—C6—C7121.4 (4)O2—C11—O1123.2 (4)
C1—C6—C7119.3 (4)O2—C11—C3125.9 (3)
C9—C10—C1120.4 (4)O1—C11—C3110.8 (3)
C9—C10—H10119.8C11—O1—C12116.3 (3)
C3—C2—C1—C60.2 (5)C10—C1—C6—C7−1.2 (5)
Br1—C2—C1—C6177.9 (2)C2—C1—C6—C7179.4 (3)
C3—C2—C1—C10−179.1 (3)C6—C1—C10—C90.5 (5)
Br1—C2—C1—C10−1.5 (4)C2—C1—C10—C9179.9 (4)
C1—C2—C3—C41.2 (5)C1—C10—C9—C80.3 (6)
Br1—C2—C3—C4−176.4 (2)C10—C9—C8—C7−0.4 (7)
C1—C2—C3—C11−177.7 (3)C9—C8—C7—C6−0.3 (7)
Br1—C2—C3—C114.7 (4)C5—C6—C7—C8−178.7 (4)
C5—C4—C3—C2−2.1 (5)C1—C6—C7—C81.1 (6)
C5—C4—C3—C11176.9 (4)C2—C3—C11—O230.4 (6)
C3—C4—C5—C61.6 (6)C4—C3—C11—O2−148.5 (4)
C4—C5—C6—C1−0.1 (5)C2—C3—C11—O1−153.4 (3)
C4—C5—C6—C7179.7 (4)C4—C3—C11—O127.7 (4)
C10—C1—C6—C5178.6 (3)O2—C11—O1—C12−4.8 (6)
C2—C1—C6—C5−0.8 (5)C3—C11—O1—C12178.9 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2693).

References

  • Ballabh, A., Trivedi, D. R. & Dastidar, P. (2005). Cryst. Growth Des. 5, 1545–1553.
  • Imai, Y., Takeshita, M., Sato, T. & Kuroda, R. (2006). Chem. Commun. 10, 1070–1072. [PubMed]
  • Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography