PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3067.
Published online 2009 November 11. doi:  10.1107/S1600536809046352
PMCID: PMC2971749

3-[1-(3,4-Dichloro­phen­yl)eth­yl]-1,3-thia­zinane-2-thione

Abstract

In the title compound, C12H13Cl2NS2, the thia­zinane ring adopts a half-boat conformation. An intra­molecular C—H(...)S hydrogen bond is observed. In the crystal structure, centrosymmetrically related mol­ecules inter­act through an aromatic π–π stacking inter­actions, with a centroid–centroid separation of 3.790 (2) Å.

Related literature

For the crystal structures of related thia­zinane compounds, see: Kálmán, et al. (1977 [triangle]); Peng & Wu (2009 [triangle]). For the biological activity of thia­zinane-containing compounds, see: Soloway et al. (1978 [triangle]); Tomizawa et al. (1995 [triangle]). For ring puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3067-scheme1.jpg

Experimental

Crystal data

  • C12H13Cl2NS2
  • M r = 306.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3067-efi1.jpg
  • a = 13.6003 (13) Å
  • b = 6.7270 (7) Å
  • c = 29.149 (3) Å
  • β = 101.417 (4)°
  • V = 2614.1 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.79 mm−1
  • T = 113 K
  • 0.14 × 0.12 × 0.08 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.897, T max = 0.939
  • 11612 measured reflections
  • 3029 independent reflections
  • 2527 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.085
  • S = 1.07
  • 3029 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809046352/rz2386sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046352/rz2386Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The 1,3-thiazinane ring is an important group in organic chemistry, as many compounds containing this groups possess a broad spectrum of biological activities (Soloway et al., 1978; Tomizawa et al., 1995). Herein, we report the crystal structure of the title compound, 3-[1-(3,4-dichlorophenyl)ethyl]-1,3-thiazinane-2-thione.

In title compound (Fig. 1), all bond lengths and angles are normal and in good agreement with those reported previously for the related compounds 2-phenylimino-1,3-thiazine (Kálmán, et al., 1977) and (Z)-(1,3-thiazinan-2-ylideneamino)formonitrile (Peng & Wu, 2009). The thiazinane ring adopts a half boat conformation, with atom C3 displaced by 0.685 (2) Å from the plane (p1) formed by S2, N1, C1, C2 and C4 [maximum least squares plane deviation 0.040 (3) Å for N1]. The ring puckering parameters of the thiazinane ring are q2 = 0.512 (2) Å, θ = 130.1 (3)° and [var phi] = 57.12 (2)° (Cremer & Pople, 1975). The dihedral angle between the benzene ring (C7—C12) and plane p1 is 84.18 (3)°. The molecular conformation is stabilized by an intramolecular C—H···S hydrogen bond (Table 1). In the crystal structure, centrosymmetrically related molecules at (x, y, z) and (-x, -y, -z) are linked by an aromatic π–π stacking interaction involving the benzene rings, with a centroid-to-centroid separation of 3.790 (2) Å.

Experimental

A solution of 1,3-thiazinane-2-thione (1.33 g, 10 mmol) and sodium hydride (0.3 g) in anhydrous acetonitrile (20 ml) was added dropwise over a period of 10 min to a solution of 1,2-dichloro-4-(1-chloroethyl)benzene (2.10 g, 10 mmol) in acetonitrile (10 ml) at 273 K. The mixture was stirred at 353 K for 3 h. The solvent was removed and the residue was purified by flash chromatography (eluted with 5:1 v/v cyclohexane/dichloromethane) to give title compound as a white solid (2.66 g, 87% yield). Single crystals suitable for X-ray measurements were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.95–1.00 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 40% probability level.

Crystal data

C12H13Cl2NS2F(000) = 1264
Mr = 306.25Dx = 1.556 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7182 reflections
a = 13.6003 (13) Åθ = 2.3–27.5°
b = 6.7270 (7) ŵ = 0.79 mm1
c = 29.149 (3) ÅT = 113 K
β = 101.417 (4)°Platelet, colourless
V = 2614.1 (5) Å30.14 × 0.12 × 0.08 mm
Z = 8

Data collection

Rigaku Saturn CCD area-detector diffractometer3029 independent reflections
Radiation source: rotating anode2527 reflections with I > 2σ(I)
confocalRint = 0.048
ω scansθmax = 27.8°, θmin = 2.9°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)h = −17→17
Tmin = 0.897, Tmax = 0.939k = −8→8
11612 measured reflectionsl = −37→36

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0402P)2 + 0.4571P] where P = (Fo2 + 2Fc2)/3
3029 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.60316 (4)0.10311 (6)0.452969 (16)0.02326 (13)
Cl20.63526 (3)0.55467 (7)0.429381 (15)0.02298 (13)
S10.55056 (4)0.60336 (7)0.693068 (19)0.02744 (14)
S20.75483 (4)0.70607 (7)0.725845 (17)0.02484 (13)
N10.69926 (10)0.4226 (2)0.66046 (5)0.0155 (3)
C10.66962 (14)0.5552 (3)0.68892 (6)0.0177 (4)
C20.80510 (13)0.3723 (3)0.66064 (7)0.0189 (4)
H2A0.80970.31300.63000.023*
H2B0.82770.27090.68510.023*
C30.87453 (14)0.5495 (3)0.66958 (7)0.0256 (4)
H3A0.94280.50940.66620.031*
H3B0.85070.65410.64610.031*
C40.87848 (15)0.6317 (3)0.71811 (7)0.0281 (5)
H4A0.92410.74790.72320.034*
H4B0.90560.52940.74160.034*
C50.62405 (13)0.3052 (2)0.62764 (6)0.0162 (4)
H50.55630.34380.63310.019*
C60.63753 (15)0.0842 (3)0.63832 (7)0.0224 (4)
H6A0.70110.03910.63090.034*
H6B0.58200.01010.61930.034*
H6C0.63820.06130.67160.034*
C70.62876 (13)0.3644 (3)0.57774 (6)0.0168 (4)
C80.61792 (13)0.2249 (3)0.54197 (6)0.0172 (4)
H80.60980.08850.54880.021*
C90.61883 (13)0.2827 (3)0.49638 (6)0.0163 (4)
C100.63158 (12)0.4809 (3)0.48584 (6)0.0167 (4)
C110.64194 (14)0.6213 (3)0.52126 (7)0.0208 (4)
H110.65040.75750.51440.025*
C120.63994 (14)0.5635 (3)0.56657 (6)0.0197 (4)
H120.64630.66120.59050.024*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0312 (3)0.0223 (2)0.0161 (2)−0.00385 (19)0.00449 (19)−0.00435 (18)
Cl20.0274 (3)0.0267 (2)0.0152 (2)0.00102 (19)0.00507 (19)0.00504 (18)
S10.0251 (3)0.0273 (3)0.0333 (3)0.0055 (2)0.0140 (2)−0.0023 (2)
S20.0338 (3)0.0205 (2)0.0181 (3)0.0007 (2)−0.0003 (2)−0.00394 (18)
N10.0150 (7)0.0191 (7)0.0123 (8)0.0016 (6)0.0023 (6)−0.0010 (6)
C10.0246 (9)0.0159 (8)0.0127 (9)0.0017 (7)0.0038 (7)0.0034 (7)
C20.0166 (9)0.0248 (9)0.0158 (10)0.0034 (7)0.0046 (7)−0.0008 (7)
C30.0190 (9)0.0317 (10)0.0259 (11)−0.0019 (8)0.0040 (8)0.0052 (9)
C40.0245 (10)0.0281 (10)0.0279 (12)−0.0067 (8)−0.0038 (8)0.0002 (8)
C50.0171 (8)0.0185 (9)0.0126 (9)−0.0007 (7)0.0016 (7)−0.0002 (7)
C60.0307 (10)0.0215 (9)0.0152 (10)−0.0041 (8)0.0046 (8)0.0015 (7)
C70.0146 (8)0.0201 (8)0.0151 (9)0.0014 (7)0.0018 (7)0.0004 (7)
C80.0172 (8)0.0163 (8)0.0176 (10)−0.0008 (7)0.0024 (7)0.0000 (7)
C90.0144 (8)0.0197 (9)0.0145 (9)−0.0006 (7)0.0022 (7)−0.0039 (7)
C100.0153 (8)0.0224 (9)0.0125 (9)0.0021 (7)0.0028 (7)0.0029 (7)
C110.0252 (10)0.0162 (9)0.0201 (10)0.0010 (7)0.0027 (8)0.0017 (7)
C120.0227 (9)0.0192 (9)0.0160 (10)0.0016 (7)0.0011 (7)−0.0023 (7)

Geometric parameters (Å, °)

Cl1—C91.7317 (18)C5—C71.522 (2)
Cl2—C101.7292 (18)C5—C61.522 (2)
S1—C11.6789 (19)C5—H51.0000
S2—C11.7430 (19)C6—H6A0.9800
S2—C41.811 (2)C6—H6B0.9800
N1—C11.334 (2)C6—H6C0.9800
N1—C21.478 (2)C7—C81.389 (2)
N1—C51.483 (2)C7—C121.393 (2)
C2—C31.511 (3)C8—C91.387 (2)
C2—H2A0.9900C8—H80.9500
C2—H2B0.9900C9—C101.387 (2)
C3—C41.510 (3)C10—C111.386 (2)
C3—H3A0.9900C11—C121.382 (3)
C3—H3B0.9900C11—H110.9500
C4—H4A0.9900C12—H120.9500
C4—H4B0.9900
C1—S2—C4106.42 (9)N1—C5—H5107.4
C1—N1—C2124.42 (15)C7—C5—H5107.4
C1—N1—C5120.18 (15)C6—C5—H5107.4
C2—N1—C5115.30 (13)C5—C6—H6A109.5
N1—C1—S1126.05 (14)C5—C6—H6B109.5
N1—C1—S2121.84 (14)H6A—C6—H6B109.5
S1—C1—S2112.08 (10)C5—C6—H6C109.5
N1—C2—C3113.25 (15)H6A—C6—H6C109.5
N1—C2—H2A108.9H6B—C6—H6C109.5
C3—C2—H2A108.9C8—C7—C12118.30 (17)
N1—C2—H2B108.9C8—C7—C5121.49 (15)
C3—C2—H2B108.9C12—C7—C5120.16 (16)
H2A—C2—H2B107.7C9—C8—C7120.70 (16)
C4—C3—C2110.84 (16)C9—C8—H8119.7
C4—C3—H3A109.5C7—C8—H8119.7
C2—C3—H3A109.5C8—C9—C10120.44 (16)
C4—C3—H3B109.5C8—C9—Cl1118.80 (14)
C2—C3—H3B109.5C10—C9—Cl1120.75 (14)
H3A—C3—H3B108.1C11—C10—C9119.28 (16)
C3—C4—S2110.86 (13)C11—C10—Cl2119.71 (14)
C3—C4—H4A109.5C9—C10—Cl2121.02 (14)
S2—C4—H4A109.5C12—C11—C10120.12 (17)
C3—C4—H4B109.5C12—C11—H11119.9
S2—C4—H4B109.5C10—C11—H11119.9
H4A—C4—H4B108.1C11—C12—C7121.16 (17)
N1—C5—C7108.84 (14)C11—C12—H12119.4
N1—C5—C6110.40 (14)C7—C12—H12119.4
C7—C5—C6115.16 (15)
C2—N1—C1—S1−174.57 (13)C6—C5—C7—C817.1 (2)
C5—N1—C1—S11.7 (2)N1—C5—C7—C12−41.1 (2)
C2—N1—C1—S27.3 (2)C6—C5—C7—C12−165.64 (16)
C5—N1—C1—S2−176.51 (12)C12—C7—C8—C90.4 (3)
C4—S2—C1—N1−2.87 (17)C5—C7—C8—C9177.67 (15)
C4—S2—C1—S1178.74 (10)C7—C8—C9—C100.6 (3)
C1—N1—C2—C3−37.4 (2)C7—C8—C9—Cl1−179.05 (13)
C5—N1—C2—C3146.26 (15)C8—C9—C10—C11−1.0 (3)
N1—C2—C3—C464.7 (2)Cl1—C9—C10—C11178.73 (13)
C2—C3—C4—S2−58.89 (18)C8—C9—C10—Cl2178.77 (13)
C1—S2—C4—C328.40 (16)Cl1—C9—C10—Cl2−1.6 (2)
C1—N1—C5—C7113.96 (17)C9—C10—C11—C120.3 (3)
C2—N1—C5—C7−69.49 (18)Cl2—C10—C11—C12−179.45 (14)
C1—N1—C5—C6−118.73 (18)C10—C11—C12—C70.7 (3)
C2—N1—C5—C657.82 (19)C8—C7—C12—C11−1.1 (3)
N1—C5—C7—C8141.65 (16)C5—C7—C12—C11−178.40 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···S11.002.483.068 (2)117

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2386).

References

  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  • Kálmán, A., Argay, G., Riba’r, B. & Toldy, L. (1977). Tetrahedron Lett, 18, 4241–4244.
  • Peng, Y. & Wu, L. (2009). Acta Cryst. E65, o784. [PMC free article] [PubMed]
  • Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soloway, S. B., Henry, A. C., Kollmeyer, W. D., Padgett, W. M., Powell, J. E., Roman, S. A., Tiemann, C. H., Corey, R. A. & Horne, C. A. (1978). Nitromethylene heterocycles as insecticides In Pesticide and Venom Neurotoxicology, edited by D. L. Shankland, R. M. Hollingworth & T. Smyth Jr, pp. 153–158. New York: Plenum Press.
  • Tomizawa, M., Otsuka, H., Miyamoto, T. & Yamamoto, I. (1995). J. Pesticide Sci 20, 49–56.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography