PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2842.
Published online 2009 October 23. doi:  10.1107/S1600536809042706
PMCID: PMC2971459

anti-9,10-Di(1-naphth­yl)anthracene pyridine disolvate

Abstract

In the title compound, C34H22·2C5H5N, there is a crystallographic inversion center in the middle of the anthracene ring system. The dihedral angle between the mean planes of the anthracene and naphthalene ring systems is 83.96 (4)°. The crystal structure is stabilized by weak inter­molecular C—H(...)N and C—H(...)π inter­actions.

Related literature

For general background to blue-light-emitting materials, see: Zhang et al. (2003 [triangle]); Raghunath et al. (2006 [triangle]). For synthetic procedures, see: Kwon et al. (2002 [triangle]); Lee et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2842-scheme1.jpg

Experimental

Crystal data

  • C34H22·2C5H5N
  • M r = 588.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2842-efi1.jpg
  • a = 8.9810 (18) Å
  • b = 24.166 (5) Å
  • c = 7.2740 (15) Å
  • β = 93.34 (3)°
  • V = 1576.0 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 174 K
  • 0.16 × 0.16 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 16543 measured reflections
  • 3897 independent reflections
  • 3121 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.116
  • S = 1.03
  • 3897 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809042706/lh2928sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042706/lh2928Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Ministry of Knowledge Economy, Republic of Korea. CHL is the recipient of a BK21 fellowship (2009).

supplementary crystallographic information

Comment

9,10-Dinaphthylanthracene has been widely used as a blue light emitting material in organic light emitting diodes (OLED) (Zhang et al., 2003; Raghunath et al., 2006). There are two stereoisomers for 9,10-di(1'-naphthyl)anthracene because the single bond rotation about the σ-bond between naphthyl and anthracene moiety is so hindered. Since the two stereoisomers of 9,10-di(1'-naphthyl)anthracene, syn and anti, could have different physical properties such as electronic states, it is considered important to carry out studies on the isolation and characterization of the isomers. Herein we report the single crystal structure of the anti form of 9,10-di(1'-naphthyl)anthracene. The molecular structure is shown in Fig. 1.

In the title compound, (C34H22).2(C5H5N), the dihedral angle between anthracene and naphtyl mean planes is 83.96 (4)°. There is a crystallographic inversion center located in the middle of anthracene ring. The crystal structure is stabilized by weak intermolecular C—H···N and C-H···π interactions (Table 1, Fig. 2).

Experimental

9,10-Di(1'-naphthyl)anthracene was prepared by a literature procedure (Kwon et al., 2002; Lee et al., 2008). Bromonaphthalene and anthraquinone were commercially available from Aldrich and used as received. n-Buthyllithium (18 ml, 1.6 M in hexane) was slowly added at 195K to a THF (50 ml) solution of bromonaphthalene (4.9 g, 0.024 mol). Anthraquinone (2 g, 0.0096 mol) was added to the mixture and the solution was stirred for 3 h at room temperature. Aqueous 2 N HCl solution was added and the organic phase was separated. The organic phase was dried and potassium iodide (0.028 mol), sodium hypophosphite monohydrate (0.0576 mol), and acetic acid (100 ml) were added. The mixture was heated for 4 h under reflux. After cooling, the precipitate was collected, washed with plenty of water, and dried (yield 80%). The separation of two isomers, syn and anti, was successfully performed after several recrystallizations from toluene and xylene. The single crystal of anti form was grown in pyridine and hexane solution.

1H NMR (400 MHz, CDCl3) δ = 8.09 (d, 2H, J = 8.0), 8.03 (d, 2H, J = 8.0), 7.74 (t, 2H, J = 6.8, J = 7.2), 7.66 (d, 2H, J = 7.2), 7.49 (m, 6H), 7.21(m, 8H).

13C NMR (100 MHz, CDCl3) δ = 136.8, 135.4, 133.7, 133.7, 130.7, 129.3, 128.3, 128.2, 127.1, 126.8, 126.3, 126.0, 125.6, 125.2.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C)

Figures

Fig. 1.
The molecular structure showing the atom-numbering scheme and 30% probability ellipsoids. Unlabeled atoms are related by the symmetry operator (-x, -y+1, -z+1).
Fig. 2.
Part of the crystal structure with hydrogen bonds shown as dashed lines. Only H atoms involved in weak C-H···N hydrogen bonds or C-H···π interactions are shown.

Crystal data

C34H22·2C5H5NF(000) = 620
Mr = 588.72Dx = 1.241 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5150 reflections
a = 8.9810 (18) Åθ = 2.3–28.1°
b = 24.166 (5) ŵ = 0.07 mm1
c = 7.2740 (15) ÅT = 174 K
β = 93.34 (3)°Block, colourless
V = 1576.0 (6) Å30.16 × 0.16 × 0.15 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometerRint = 0.026
[var phi] and ω scansθmax = 28.3°, θmin = 1.7°
16543 measured reflectionsh = −11→11
3897 independent reflectionsk = −31→32
3121 reflections with I > 2σ(I)l = −9→9

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044w = 1/[σ2(Fo2) + (0.0481P)2 + 0.4153P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.27 e Å3
3897 reflectionsΔρmin = −0.22 e Å3
208 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.05625 (11)0.54185 (4)0.38731 (15)0.0273 (2)
C20.11828 (13)0.58393 (5)0.27710 (17)0.0338 (3)
H20.05740.60180.1880.041*
C30.26455 (14)0.59831 (5)0.29986 (19)0.0396 (3)
H30.30270.62560.22560.048*
C40.35912 (13)0.57214 (5)0.43571 (19)0.0389 (3)
H40.45910.58220.44960.047*
C50.30516 (12)0.53240 (5)0.54615 (17)0.0324 (3)
H50.36870.51580.63530.039*
C60.15163 (11)0.51567 (4)0.52738 (15)0.0268 (2)
C7−0.09396 (11)0.52557 (4)0.36048 (15)0.0268 (2)
C8−0.19254 (12)0.55196 (5)0.21282 (15)0.0294 (2)
C9−0.26471 (11)0.60328 (5)0.24560 (15)0.0278 (2)
C10−0.24646 (12)0.63180 (5)0.41558 (17)0.0326 (3)
H10−0.18440.61710.510.039*
C11−0.31893 (14)0.68071 (5)0.4428 (2)0.0424 (3)
H11−0.30590.69890.55530.051*
C12−0.41311 (14)0.70367 (5)0.3013 (2)0.0459 (3)
H12−0.46150.7370.32050.055*
C13−0.43357 (13)0.67737 (5)0.1369 (2)0.0419 (3)
H13−0.49660.69290.04490.05*
C14−0.36078 (12)0.62677 (5)0.10307 (17)0.0333 (3)
C15−0.38159 (15)0.59853 (6)−0.06721 (18)0.0446 (3)
H15−0.44410.6136−0.16070.054*
C16−0.31118 (16)0.54967 (7)−0.09547 (18)0.0491 (4)
H16−0.32570.5316−0.20790.059*
C17−0.21627 (14)0.52640 (6)0.04517 (18)0.0409 (3)
H17−0.16870.4930.02390.049*
N180.26262 (13)0.69991 (6)0.82489 (18)0.0519 (3)
C190.19358 (17)0.74566 (6)0.8706 (2)0.0503 (3)
H190.250.77780.88410.06*
C200.04512 (18)0.74902 (8)0.8994 (2)0.0598 (4)
H200.00260.78260.93020.072*
C21−0.03967 (18)0.70250 (9)0.8825 (2)0.0664 (5)
H21−0.14090.70360.90290.08*
C220.0270 (2)0.65402 (8)0.8348 (2)0.0649 (5)
H22−0.02790.62150.82120.078*
C230.1781 (2)0.65463 (7)0.8073 (2)0.0588 (4)
H230.22320.62170.77480.071*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0250 (5)0.0259 (5)0.0313 (5)0.0001 (4)0.0047 (4)−0.0023 (4)
C20.0320 (6)0.0325 (6)0.0373 (6)−0.0009 (4)0.0052 (5)0.0035 (5)
C30.0358 (6)0.0362 (6)0.0479 (7)−0.0078 (5)0.0111 (5)0.0043 (5)
C40.0252 (5)0.0408 (7)0.0512 (7)−0.0072 (5)0.0066 (5)−0.0028 (6)
C50.0238 (5)0.0333 (6)0.0402 (6)−0.0009 (4)0.0015 (4)−0.0037 (5)
C60.0238 (5)0.0255 (5)0.0315 (5)0.0007 (4)0.0038 (4)−0.0040 (4)
C70.0252 (5)0.0254 (5)0.0298 (5)0.0015 (4)0.0019 (4)−0.0029 (4)
C80.0255 (5)0.0329 (6)0.0298 (5)−0.0010 (4)0.0019 (4)0.0001 (4)
C90.0215 (5)0.0301 (5)0.0319 (5)−0.0034 (4)0.0015 (4)0.0034 (4)
C100.0269 (5)0.0322 (6)0.0383 (6)−0.0001 (4)−0.0007 (4)−0.0020 (5)
C110.0362 (6)0.0365 (7)0.0546 (8)0.0003 (5)0.0033 (6)−0.0098 (6)
C120.0325 (6)0.0305 (6)0.0748 (10)0.0043 (5)0.0053 (6)0.0014 (6)
C130.0273 (6)0.0391 (7)0.0590 (8)0.0016 (5)−0.0010 (5)0.0169 (6)
C140.0242 (5)0.0377 (6)0.0379 (6)−0.0032 (4)−0.0001 (4)0.0094 (5)
C150.0379 (7)0.0612 (9)0.0338 (6)−0.0026 (6)−0.0071 (5)0.0092 (6)
C160.0494 (8)0.0666 (10)0.0303 (6)−0.0016 (7)−0.0047 (6)−0.0088 (6)
C170.0407 (7)0.0451 (7)0.0366 (7)0.0031 (5)0.0006 (5)−0.0087 (5)
N180.0425 (6)0.0580 (8)0.0549 (7)0.0085 (5)−0.0004 (5)0.0005 (6)
C190.0489 (8)0.0498 (8)0.0515 (8)−0.0012 (6)−0.0031 (6)−0.0031 (7)
C200.0540 (9)0.0713 (11)0.0545 (9)0.0175 (8)0.0065 (7)−0.0048 (8)
C210.0395 (8)0.1033 (15)0.0563 (10)−0.0012 (9)0.0011 (7)0.0171 (10)
C220.0730 (11)0.0685 (11)0.0503 (9)−0.0279 (9)−0.0201 (8)0.0170 (8)
C230.0767 (11)0.0469 (9)0.0515 (9)0.0112 (8)−0.0073 (8)−0.0021 (7)

Geometric parameters (Å, °)

C1—C71.4079 (15)C12—C131.357 (2)
C1—C21.4281 (16)C12—H120.93
C1—C61.4388 (16)C13—C141.4149 (18)
C2—C31.3596 (17)C13—H130.93
C2—H20.93C14—C151.4170 (19)
C3—C41.4143 (19)C15—C161.361 (2)
C3—H30.93C15—H150.93
C4—C51.3593 (17)C16—C171.4099 (19)
C4—H40.93C16—H160.93
C5—C61.4358 (15)C17—H170.93
C5—H50.93N18—C191.3197 (19)
C6—C7i1.4057 (15)N18—C231.333 (2)
C7—C6i1.4057 (15)C19—C201.364 (2)
C7—C81.4944 (16)C19—H190.93
C8—C171.3725 (17)C20—C211.359 (3)
C8—C91.4260 (15)C20—H200.93
C9—C101.4166 (16)C21—C221.370 (3)
C9—C141.4273 (16)C21—H210.93
C10—C111.3693 (17)C22—C231.383 (3)
C10—H100.93C22—H220.93
C11—C121.408 (2)C23—H230.93
C11—H110.93
C7—C1—C2121.55 (10)C13—C12—H12119.9
C7—C1—C6120.10 (10)C11—C12—H12119.9
C2—C1—C6118.35 (10)C12—C13—C14121.19 (12)
C3—C2—C1121.30 (11)C12—C13—H13119.4
C3—C2—H2119.4C14—C13—H13119.4
C1—C2—H2119.4C13—C14—C15121.98 (12)
C2—C3—C4120.49 (11)C13—C14—C9118.89 (12)
C2—C3—H3119.8C15—C14—C9119.13 (12)
C4—C3—H3119.8C16—C15—C14120.74 (12)
C5—C4—C3120.57 (11)C16—C15—H15119.6
C5—C4—H4119.7C14—C15—H15119.6
C3—C4—H4119.7C15—C16—C17120.21 (12)
C4—C5—C6121.07 (11)C15—C16—H16119.9
C4—C5—H5119.5C17—C16—H16119.9
C6—C5—H5119.5C8—C17—C16121.42 (13)
C7i—C6—C5121.91 (10)C8—C17—H17119.3
C7i—C6—C1119.89 (9)C16—C17—H17119.3
C5—C6—C1118.19 (10)C19—N18—C23116.01 (14)
C6i—C7—C1120.01 (10)N18—C19—C20124.50 (15)
C6i—C7—C8119.79 (9)N18—C19—H19117.8
C1—C7—C8120.20 (10)C20—C19—H19117.8
C17—C8—C9119.43 (11)C21—C20—C19118.96 (16)
C17—C8—C7120.09 (11)C21—C20—H20120.5
C9—C8—C7120.47 (10)C19—C20—H20120.5
C10—C9—C8122.58 (10)C20—C21—C22118.66 (15)
C10—C9—C14118.34 (11)C20—C21—H21120.7
C8—C9—C14119.07 (10)C22—C21—H21120.7
C11—C10—C9120.96 (11)C21—C22—C23118.33 (16)
C11—C10—H10119.5C21—C22—H22120.8
C9—C10—H10119.5C23—C22—H22120.8
C10—C11—C12120.33 (13)N18—C23—C22123.54 (16)
C10—C11—H11119.8N18—C23—H23118.2
C12—C11—H11119.8C22—C23—H23118.2
C13—C12—C11120.29 (12)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13···N18ii0.932.623.4887 (19)156
C4—H4···Cg1iii0.932.863.6026 (15)138
C16—H16···Cg2iv0.932.853.6177 (18)141

Symmetry codes: (ii) x−1, y, z−1; (iii) x+1, y, z; (iv) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2928).

References

  • Bruker (2002). SADABS, SAINT and SMART, Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kwon, S.-K., Kim, Y.-H., Park, S.-Y. & An, B. K. (2002). Mol. Cryst. Liq. Cryst.377, 19–23.
  • Lee, W., Kang, Y. & Lee, P. H. (2008). J. Org. Chem.73, 4326–4329. [PubMed]
  • Raghunath, P., Reddy, M. A., Gouri, C., Bhanuprakash, K. & Rao, V. J. (2006). J. Phys. Chem. A, 110, 1152–1162. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zhang, X. H., Liu, M. W., Wong, O. Y., Lee, C. S., Kwong, H. L., Lee, S. T. & Wu, S. K. (2003). Chem. Phys. Lett.369, 478–482.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography