PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1296.
Published online 2009 October 3. doi:  10.1107/S1600536809038616
PMCID: PMC2971458

{2,2′-[Pyridine-3,4-diylbis(nitrilo­methyl­idyne)]diphenolato}zinc(II)

Abstract

The title compound, [Zn(C19H13N3O2)], has been synthesized by the reaction of Zn(ClO4)2·6H2O and the tetra­dentate Schiff base ligand 2,2′-[pyridine-3,4-diylbis(nitrilo­methyl­idyne)]diphenol (L). The coordination geometry of the ZnII ion is slightly distorted square-planar, formed by two N atoms and two O atoms from the L ligand.

Related literature

For properties of transition metals complexes with Schiff base ligands, see: Aurangzeb et al. (1994 [triangle]); Hulme et al. (1997 [triangle]); Li et al. (2008 [triangle]); Fei & Fang (2008 [triangle]); Zhang & Janiak (2001 [triangle]). For related structures, see: Li & Zhang (2004 [triangle]); Chen (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1296-scheme1.jpg

Experimental

Crystal data

  • [Zn(C19H13N3O2)]
  • M r = 380.69
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1296-efi1.jpg
  • a = 5.3563 (8) Å
  • b = 16.603 (2) Å
  • c = 17.311 (3) Å
  • V = 1539.5 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.61 mm−1
  • T = 293 K
  • 0.25 × 0.21 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.689, T max = 0.760
  • 7573 measured reflections
  • 2720 independent reflections
  • 2519 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.109
  • S = 1.00
  • 2720 reflections
  • 227 parameters
  • H-atom parameters constrained
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.25 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1105 Friedel pairs
  • Flack parameter: 0.090 (18)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Sheldrick, 1998 [triangle]); software used to prepare material for publication: XP.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809038616/hg2565sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038616/hg2565Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Jining University, China.

supplementary crystallographic information

Comment

Schiff base complexes have attracted much attention due to their interesting structures and wide potential applications. They play an important role in the development of coordination chemistry as well as inorganic biochemistry, catalysis and optical materials (Aurangzeb et al., 1994, Hulme et al., 1997; Li et al., 2008; Fei et al., 2008; Zhang & Janiak, 2001). Here, we report the structure of a new zinc complex based on a tetradentate Schiff base ligand. The molecular structure of title compound is shown in Fig. 1. As can be seen, the whole molecule of the title complex is essentially planar. The Zn ion is four-coordinate with the four positions occupied by two N atoms and two O atoms of the Schiff base ligand. The mean deviation of the plane formed by ZnN2O2 unit is 0.0121 Å. The Zn—O and Zn—N bond lengths are all consistent with those found in other Zn Schiff base complexes (Chen, 2005; Li, et al., 2004).

Experimental

The Schiff base ligand was synthesized by condensation 3,4-diaminopyridine and 2-hydroxy-benzaldehyde with the ratio 1:2 in ethanol.The synthesis of the title complex was carried out by reacting Zn(ClO4)2.6H2O (1 mmol, 373 mg) and the schiff-base ligand (1 mmol, 317 mg) in methanol under the stirring condition at room temperature. The filtrated solution was left to slowly evaperate in air to obtain single-crystal suitable for X-ray diffraction with the yield about 228 mg, 60%.

Refinement

All the H atoms bonded to the C atoms were placed using the HFIX commands in SHELXL-97, with C—H distances of 0.93 Å, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Zn(C19H13N3O2)]F(000) = 776
Mr = 380.69Dx = 1.643 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4002 reflections
a = 5.3563 (8) Åθ = 2.5–26.4°
b = 16.603 (2) ŵ = 1.61 mm1
c = 17.311 (3) ÅT = 293 K
V = 1539.5 (4) Å3Block, colourless
Z = 40.25 × 0.21 × 0.18 mm

Data collection

Bruker APEXII CCD area-detector diffractometer2720 independent reflections
Radiation source: fine-focus sealed tube2519 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −6→6
Tmin = 0.689, Tmax = 0.760k = −15→19
7573 measured reflectionsl = −19→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.109w = 1/[σ2(Fo2) + (0.084P)2 + 0.0681P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2720 reflectionsΔρmax = 0.46 e Å3
227 parametersΔρmin = −0.25 e Å3
0 restraintsAbsolute structure: Flack (1983), 1105 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.090 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.85000 (8)0.22279 (3)0.81022 (2)0.04025 (17)
O10.5747 (5)0.18278 (15)0.76293 (15)0.0423 (6)
O20.8521 (6)0.12568 (16)0.86177 (15)0.0439 (6)
N11.4213 (8)0.4650 (2)0.8360 (2)0.0592 (10)
N21.1291 (6)0.26236 (16)0.85990 (15)0.0331 (6)
N30.8496 (6)0.31937 (17)0.75595 (15)0.0339 (6)
C11.3829 (8)0.3878 (2)0.8649 (2)0.0455 (9)
H11.48790.36730.90290.055*
C21.1895 (7)0.3421 (2)0.83702 (19)0.0349 (8)
C31.0329 (8)0.3735 (2)0.7803 (2)0.0376 (8)
C41.0658 (9)0.4516 (2)0.7538 (2)0.0474 (10)
H40.95510.47380.71840.057*
C51.2653 (10)0.4959 (3)0.7810 (3)0.0515 (11)
H51.29390.54730.76170.062*
C60.5160 (7)0.2875 (2)0.66888 (19)0.0390 (8)
C70.4547 (7)0.2126 (2)0.70379 (19)0.0374 (8)
C80.2526 (8)0.1694 (3)0.6747 (2)0.0485 (10)
H80.20420.12120.69760.058*
C90.1245 (9)0.1989 (3)0.6112 (2)0.0531 (11)
H9−0.00760.16890.59140.064*
C100.1841 (8)0.2700 (3)0.5766 (2)0.0529 (11)
H100.09360.28800.53410.064*
C110.3765 (9)0.3141 (3)0.6046 (2)0.0512 (10)
H110.41730.36270.58110.061*
C120.7065 (7)0.3362 (2)0.6972 (2)0.0385 (8)
H120.73420.38490.67210.046*
C131.2240 (7)0.1422 (2)0.9337 (2)0.0374 (8)
C141.0142 (8)0.0984 (2)0.9087 (2)0.0383 (8)
C150.9911 (8)0.0187 (2)0.9372 (2)0.0451 (9)
H150.8543−0.01190.92200.054*
C161.1607 (9)−0.0145 (3)0.9858 (2)0.0492 (10)
H161.1398−0.06711.00290.059*
C171.3639 (9)0.0297 (3)1.0097 (2)0.0518 (10)
H171.47900.00731.04380.062*
C181.3951 (8)0.1056 (2)0.9835 (2)0.0453 (10)
H181.53500.13460.99920.054*
C191.2673 (7)0.2216 (3)0.9071 (2)0.0385 (8)
H191.41000.24710.92550.046*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0432 (3)0.0352 (2)0.0423 (3)0.00271 (19)−0.0008 (2)−0.00027 (18)
O10.0449 (16)0.0337 (13)0.0484 (14)0.0016 (12)−0.0065 (12)0.0014 (11)
O20.0449 (15)0.0393 (13)0.0475 (14)−0.0069 (14)−0.0108 (14)0.0101 (12)
N10.064 (3)0.055 (2)0.058 (2)−0.0059 (19)0.0026 (18)−0.0003 (18)
N20.0392 (16)0.0273 (14)0.0327 (13)0.0004 (13)0.0021 (13)−0.0018 (12)
N30.0388 (17)0.0285 (14)0.0344 (14)0.0033 (14)0.0027 (15)−0.0011 (11)
C10.053 (2)0.042 (2)0.0421 (19)−0.0040 (18)0.0015 (18)0.0017 (17)
C20.038 (2)0.0353 (18)0.0318 (16)0.0032 (15)0.0064 (14)−0.0035 (14)
C30.044 (2)0.0340 (19)0.0344 (17)−0.0007 (17)0.0039 (16)−0.0040 (14)
C40.063 (3)0.033 (2)0.046 (2)0.0008 (18)−0.002 (2)0.0048 (17)
C50.068 (3)0.037 (2)0.050 (2)−0.0088 (19)−0.002 (2)0.0078 (18)
C60.042 (2)0.042 (2)0.0327 (16)0.0114 (17)0.0012 (15)−0.0041 (15)
C70.0357 (17)0.040 (2)0.0366 (18)0.0141 (16)−0.0035 (15)−0.0083 (16)
C80.046 (2)0.043 (2)0.056 (2)0.0089 (18)−0.0022 (19)−0.008 (2)
C90.041 (2)0.062 (3)0.056 (2)0.010 (2)−0.011 (2)−0.023 (2)
C100.047 (2)0.067 (3)0.044 (2)0.014 (2)−0.0108 (18)−0.009 (2)
C110.054 (3)0.057 (2)0.043 (2)0.011 (2)0.001 (2)0.0016 (18)
C120.049 (2)0.0336 (18)0.0334 (17)0.0095 (15)0.0007 (16)−0.0012 (15)
C130.040 (2)0.038 (2)0.0343 (17)0.0016 (16)0.0017 (16)0.0028 (15)
C140.045 (2)0.0354 (19)0.0344 (17)0.0032 (16)0.0055 (17)0.0012 (15)
C150.055 (2)0.0344 (18)0.046 (2)−0.0066 (18)−0.003 (2)0.0022 (17)
C160.060 (3)0.038 (2)0.049 (2)0.011 (2)0.006 (2)0.0115 (17)
C170.052 (3)0.053 (2)0.051 (2)0.010 (2)−0.007 (2)0.0112 (19)
C180.046 (3)0.047 (2)0.043 (2)0.0036 (18)−0.0051 (18)0.0025 (17)
C190.0367 (18)0.0397 (19)0.0392 (17)−0.0019 (17)−0.0026 (14)−0.0055 (18)

Geometric parameters (Å, °)

Zn1—O11.813 (3)C7—C81.393 (6)
Zn1—O21.843 (2)C8—C91.385 (6)
Zn1—N21.846 (3)C8—H80.9300
Zn1—N31.858 (3)C9—C101.361 (7)
O1—C71.306 (4)C9—H90.9300
O2—C141.273 (5)C10—C111.354 (7)
N1—C51.367 (6)C10—H100.9300
N1—C11.391 (6)C11—H110.9300
N2—C191.294 (5)C12—H120.9300
N2—C21.419 (5)C13—C181.397 (5)
N3—C121.304 (4)C13—C141.406 (6)
N3—C31.396 (5)C13—C191.416 (6)
C1—C21.372 (6)C14—C151.417 (5)
C1—H10.9300C15—C161.355 (6)
C2—C31.393 (5)C15—H150.9300
C3—C41.387 (5)C16—C171.376 (6)
C4—C51.380 (7)C16—H160.9300
C4—H40.9300C17—C181.351 (6)
C5—H50.9300C17—H170.9300
C6—C121.391 (6)C18—H180.9300
C6—C111.412 (5)C19—H190.9300
C6—C71.421 (6)
O1—Zn1—O284.43 (12)C9—C8—C7119.4 (4)
O1—Zn1—N2178.96 (12)C9—C8—H8120.3
O2—Zn1—N294.64 (12)C7—C8—H8120.3
O1—Zn1—N394.99 (13)C10—C9—C8122.6 (4)
O2—Zn1—N3178.58 (12)C10—C9—H9118.7
N2—Zn1—N385.95 (13)C8—C9—H9118.7
C7—O1—Zn1128.0 (3)C11—C10—C9119.3 (4)
C14—O2—Zn1128.6 (2)C11—C10—H10120.3
C5—N1—C1120.4 (4)C9—C10—H10120.3
C19—N2—C2122.3 (3)C10—C11—C6121.0 (4)
C19—N2—Zn1124.9 (3)C10—C11—H11119.5
C2—N2—Zn1112.7 (2)C6—C11—H11119.5
C12—N3—C3120.7 (3)N3—C12—C6125.6 (3)
C12—N3—Zn1125.4 (3)N3—C12—H12117.2
C3—N3—Zn1113.7 (2)C6—C12—H12117.2
C2—C1—N1119.7 (4)C18—C13—C14119.4 (3)
C2—C1—H1120.2C18—C13—C19119.8 (4)
N1—C1—H1120.2C14—C13—C19120.8 (3)
C1—C2—C3119.7 (4)O2—C14—C13123.9 (3)
C1—C2—N2126.2 (4)O2—C14—C15119.7 (4)
C3—C2—N2114.1 (3)C13—C14—C15116.4 (3)
C4—C3—C2120.4 (4)C16—C15—C14122.5 (4)
C4—C3—N3126.3 (4)C16—C15—H15118.7
C2—C3—N3113.3 (3)C14—C15—H15118.7
C5—C4—C3118.9 (4)C15—C16—C17120.0 (4)
C5—C4—H4120.5C15—C16—H16120.0
C3—C4—H4120.5C17—C16—H16120.0
N1—C5—C4120.8 (4)C18—C17—C16119.6 (4)
N1—C5—H5119.6C18—C17—H17120.2
C4—C5—H5119.6C16—C17—H17120.2
C12—C6—C11119.0 (4)C17—C18—C13122.1 (4)
C12—C6—C7121.9 (3)C17—C18—H18119.0
C11—C6—C7119.2 (4)C13—C18—H18119.0
O1—C7—C8118.1 (4)N2—C19—C13126.8 (4)
O1—C7—C6123.5 (3)N2—C19—H19116.6
C8—C7—C6118.4 (3)C13—C19—H19116.6

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2565).

References

  • Aurangzeb, N., Hulme, C. E., McAuliffe, C. A., Pritchard, R. G., Watkinson, M., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193–2195.
  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison,Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Y. (2005). Acta Cryst. E61, m2716–m2717.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fei, L. & Fang, Z. (2008). Acta Cryst. E64, m406. [PMC free article] [PubMed]
  • Hulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliffe, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805–1814.
  • Li, C. H., Huang, K. L., Dou, J. M., Chi, Y. N., Xu, Y. Q., Shen, L., Wang, D. Q. & Hu, C. W. (2008). CrystEngComm, 8, 3141–3143.
  • Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017–m1019.
  • Sheldrick, G. M. (1998). XP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719–720. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography