PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2758.
Published online 2009 October 17. doi:  10.1107/S1600536809041026
PMCID: PMC2971454

N-[2-Chloro-6-(4-chloro-6-methoxy­pyrimidin-2-ylsulfan­yl)benz­yl]-3,4-dimethyl­aniline

Abstract

In the title mol­ecule, C20H19Cl2N3OS, the dihedral angle between the two benzene rings is 79.3 (7)°. The 4-chloro-6-methoxy­pyrimidine group is rotationally disordered over two sites by approximately 180°, the ratio of the refined occupancies being 0.6772 (15):0.3228 (15). Both disorder components of disorder are involved in intra­molecular N—H(...)N hydrogen bonds.

Related literature

For the biological functions of pyrimidine derivatives, see: Joffe et al. (1989 [triangle]); Petersen & Schmidt (2003 [triangle]); Blum (2001 [triangle]); Gompper et al. (2004 [triangle]); Michael (2005 [triangle]); Nadal & Olavarria (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2758-scheme1.jpg

Experimental

Crystal data

  • C20H19Cl2N3OS
  • M r = 420.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2758-efi1.jpg
  • a = 12.3653 (12) Å
  • b = 14.1332 (14) Å
  • c = 11.8276 (11) Å
  • β = 97.340 (1)°
  • V = 2050.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.43 mm−1
  • T = 296 K
  • 0.37 × 0.28 × 0.25 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.856, T max = 0.899
  • 15364 measured reflections
  • 3804 independent reflections
  • 2727 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.139
  • S = 1.04
  • 3804 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041026/lh2926sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041026/lh2926Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Doctoral Foundation of Luoyang Normal University.

supplementary crystallographic information

Comment

Pyrimidine derivatives are widespread in medicinal and natural product chemistry. A number of natural products, pharmaceuticals, and functional materials incorporate this heterocycle (Michael, 2005). Several examples of pharmaceutically important compounds include trimethoprim (Joffe et al., 1989), sulfadiazine (Petersen & Schmidt, 2003),Gleevec (imatinib mesilate) (Nadal & Olavarria, 2004), and Xeloda (capecitabine) (Blum, 2001). Natural and unnatural polymers also contain pyrimidine derivatives (Gompper et al., 2004). The potent physiological properties of these pyrimidine derivatives has led to their vast use as medicines in the field of pharmaceutical chemistry. In this context, we report the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. The bond lengths and angles are as expected. The the dihedral angle between the two benzene rings is 79.3 (7)°. The 4-chloro-6-methoxypyrimidine group is rotationlly disordered over two sites by approximately 180° with the ratio of the refined occupancies being 0.6772 (15):0.3228 (15). Both the major and minor components of disorder are involved in intramolecular N-H···N hydrogen bonds.

Experimental

To a solution of 2,4-dichloro-6-methoxypyrimidine (0.5 mmol) and 2-((3,4-dimethylphenylamino)methyl)-3-chlorobenzenethiol (0.5 mmol) in dry methylbenzene NaH (0.6 mmol) was added. The mixture was stirred for 12 h at room temperature. After evaporation of the solvent, the residue was purified by column chromatography on silica gel to afford the title compound as a colorless solid (yield 90%). The title compound was recrystallized from CH2Cl2 at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

Refinement

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 Å (aromatic CH); 0.97 Å (methylene CH2); 0.96 Å (methyl), and with Uĩso~(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme and 30% probability displacement ellipsoids. The disorder is not shown.
Fig. 2.
The molecular structure of the title compound with the atom numbering scheme and 30% probability displacement ellipsoids. The minor component of disorder is shown with open bonds and the dashed line represents a hydrogen bond.

Crystal data

C20H19Cl2N3OSF(000) = 872
Mr = 420.34Dx = 1.362 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3665 reflections
a = 12.3653 (12) Åθ = 2.7–21.7°
b = 14.1332 (14) ŵ = 0.43 mm1
c = 11.8276 (11) ÅT = 296 K
β = 97.340 (1)°Block, colourless
V = 2050.1 (3) Å30.37 × 0.28 × 0.25 mm
Z = 4

Data collection

Bruker APEXII diffractometer3804 independent reflections
Radiation source: fine-focus sealed tube2727 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.856, Tmax = 0.899k = −17→17
15364 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0558P)2 + 1.1287P] where P = (Fo2 + 2Fc2)/3
3804 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.48 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C160.15712 (12)0.08616 (19)0.48299 (12)0.0579 (7)0.6772 (15)
C170.06084 (10)0.14779 (8)0.61811 (10)0.0540 (9)0.6772 (15)
C18−0.03179 (7)0.15182 (8)0.54001 (8)0.0582 (11)0.6772 (15)
H18−0.09850.17040.56120.070*0.6772 (15)
C19−0.02176 (7)0.12790 (7)0.43258 (8)0.0573 (10)0.6772 (15)
C200.15013 (16)0.16340 (13)0.81220 (15)0.0654 (12)0.6772 (15)
H20A0.17490.09910.81130.098*0.6772 (15)
H20B0.12990.17790.88600.098*0.6772 (15)
H20C0.20760.20510.79620.098*0.6772 (15)
Cl2−0.13131 (8)0.13451 (9)0.32716 (10)0.0852 (4)0.6772 (15)
O10.05547 (12)0.17589 (12)0.72538 (12)0.0680 (7)0.6772 (15)
C16'0.16085 (11)0.10476 (18)0.49634 (11)0.0579 (7)0.3228 (15)
C19'0.08829 (11)0.14785 (9)0.66157 (11)0.0573 (10)0.3228 (15)
C18'−0.01246 (9)0.15594 (9)0.60104 (9)0.0582 (11)0.3228 (15)
H18'−0.07060.18000.63480.070*0.3228 (15)
C17'−0.02647 (7)0.12816 (7)0.49021 (8)0.0540 (9)0.3228 (15)
C20'−0.11725 (8)0.11835 (10)0.30480 (11)0.0654 (12)0.3228 (15)
H20D−0.06990.16270.27410.098*0.3228 (15)
H20E−0.18880.12210.26260.098*0.3228 (15)
H20F−0.08910.05550.29910.098*0.3228 (15)
Cl2'0.11223 (15)0.18012 (14)0.80264 (15)0.0852 (4)0.3228 (15)
N3'0.17432 (13)0.11642 (15)0.61125 (12)0.0625 (9)0.3228 (15)
N2'0.05936 (9)0.09825 (12)0.43865 (9)0.0551 (8)0.3228 (15)
O1'−0.12330 (7)0.14091 (10)0.42454 (9)0.0680 (7)0.3228 (15)
C10.3169 (2)0.35870 (18)0.5611 (2)0.0509 (6)
C20.2300 (2)0.39912 (19)0.6075 (2)0.0554 (6)
H20.19370.36340.65690.067*
C30.1958 (2)0.4909 (2)0.5823 (2)0.0605 (7)
C40.2502 (3)0.5451 (2)0.5075 (2)0.0667 (8)
C50.3344 (3)0.5040 (2)0.4610 (2)0.0682 (8)
H50.37020.53920.41060.082*
C60.3687 (2)0.4123 (2)0.4860 (2)0.0606 (7)
H60.42620.38670.45250.073*
C70.1032 (3)0.5315 (3)0.6380 (3)0.0932 (11)
H7A0.07220.48280.68060.140*
H7B0.04830.55560.58050.140*
H7C0.12990.58180.68850.140*
C80.2164 (4)0.6463 (2)0.4800 (3)0.1028 (13)
H8A0.25950.67140.42500.154*
H8B0.22760.68370.54820.154*
H8C0.14070.64790.44920.154*
C90.4226 (2)0.2140 (2)0.5326 (2)0.0664 (8)
H9A0.49220.24590.53390.080*
H9B0.39010.20790.45380.080*
C100.3725 (2)0.0407 (2)0.5510 (2)0.0580 (7)
C110.4391 (2)0.11761 (19)0.5862 (2)0.0560 (7)
C120.5198 (2)0.1017 (2)0.6773 (2)0.0591 (7)
C130.5361 (2)0.0153 (2)0.7298 (2)0.0649 (8)
H130.59090.00770.79060.078*
C140.4713 (2)−0.0591 (2)0.6921 (3)0.0668 (8)
H140.4821−0.11790.72680.080*
C150.3897 (2)−0.0469 (2)0.6025 (3)0.0655 (8)
H150.3459−0.09790.57640.079*
Cl10.60797 (8)0.19268 (7)0.72836 (9)0.1024 (4)
N10.35165 (18)0.26822 (15)0.59613 (19)0.0620 (6)
H10.30290.23570.62610.093*
N20.1576 (3)0.1175 (2)0.5905 (3)0.0551 (8)0.6772 (15)
N30.0724 (3)0.0956 (3)0.3984 (3)0.0625 (9)0.6772 (15)
S10.27000 (6)0.04895 (7)0.43144 (7)0.0834 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C160.0475 (15)0.0469 (17)0.079 (2)0.0063 (13)0.0058 (14)−0.0074 (15)
C170.049 (2)0.054 (2)0.059 (2)0.0051 (17)0.0072 (18)0.0076 (17)
C180.0427 (19)0.065 (2)0.064 (3)0.0067 (16)−0.004 (2)0.000 (2)
C190.0444 (19)0.059 (2)0.069 (3)0.0032 (16)0.0065 (17)0.0124 (18)
C200.049 (2)0.096 (3)0.050 (2)0.019 (2)0.0033 (17)0.007 (2)
Cl20.0551 (6)0.1185 (10)0.0778 (8)0.0104 (6)−0.0073 (5)−0.0032 (7)
O10.0512 (14)0.098 (2)0.0554 (15)0.0186 (14)0.0076 (11)0.0065 (14)
C16'0.0475 (15)0.0469 (17)0.079 (2)0.0063 (13)0.0058 (14)−0.0074 (15)
C19'0.0444 (19)0.059 (2)0.069 (3)0.0032 (16)0.0065 (17)0.0124 (18)
C18'0.0427 (19)0.065 (2)0.064 (3)0.0067 (16)−0.004 (2)0.000 (2)
C17'0.049 (2)0.054 (2)0.059 (2)0.0051 (17)0.0072 (18)0.0076 (17)
C20'0.049 (2)0.096 (3)0.050 (2)0.019 (2)0.0033 (17)0.007 (2)
Cl2'0.0551 (6)0.1185 (10)0.0778 (8)0.0104 (6)−0.0073 (5)−0.0032 (7)
N3'0.0452 (18)0.076 (2)0.067 (2)0.0063 (17)0.0107 (15)−0.0018 (17)
N2'0.0462 (17)0.056 (2)0.0644 (19)0.0078 (15)0.0129 (14)0.0073 (15)
O1'0.0512 (14)0.098 (2)0.0554 (15)0.0186 (14)0.0076 (11)0.0065 (14)
C10.0480 (13)0.0527 (14)0.0502 (14)0.0020 (12)−0.0013 (11)−0.0005 (11)
C20.0524 (15)0.0616 (16)0.0518 (14)0.0043 (12)0.0048 (12)−0.0005 (12)
C30.0595 (16)0.0671 (18)0.0523 (15)0.0159 (14)−0.0028 (13)−0.0078 (13)
C40.084 (2)0.0598 (17)0.0520 (15)0.0133 (15)−0.0067 (15)0.0033 (13)
C50.081 (2)0.0665 (19)0.0563 (16)−0.0022 (16)0.0069 (15)0.0107 (14)
C60.0588 (16)0.0663 (17)0.0569 (16)0.0037 (14)0.0081 (13)0.0029 (13)
C70.096 (3)0.099 (3)0.087 (2)0.039 (2)0.019 (2)−0.005 (2)
C80.153 (4)0.068 (2)0.082 (2)0.030 (2)−0.004 (2)0.0116 (18)
C90.0664 (17)0.0695 (18)0.0647 (17)0.0221 (14)0.0140 (14)0.0099 (14)
C100.0439 (14)0.0737 (19)0.0578 (15)0.0164 (13)0.0118 (12)−0.0061 (14)
C110.0530 (15)0.0644 (17)0.0522 (15)0.0182 (13)0.0124 (12)0.0033 (12)
C120.0542 (15)0.0612 (17)0.0615 (16)0.0092 (13)0.0058 (12)−0.0004 (13)
C130.0612 (17)0.077 (2)0.0569 (16)0.0209 (15)0.0070 (13)0.0076 (15)
C140.0713 (19)0.0633 (18)0.0693 (18)0.0155 (15)0.0227 (15)0.0130 (15)
C150.0545 (16)0.0673 (19)0.079 (2)0.0039 (14)0.0258 (15)−0.0090 (15)
Cl10.0947 (7)0.0804 (6)0.1220 (8)−0.0042 (5)−0.0248 (6)−0.0057 (5)
N10.0617 (14)0.0545 (13)0.0732 (15)0.0142 (11)0.0217 (12)0.0084 (11)
N20.0462 (17)0.056 (2)0.0644 (19)0.0078 (15)0.0129 (14)0.0073 (15)
N30.0452 (18)0.076 (2)0.067 (2)0.0063 (17)0.0107 (15)−0.0018 (17)
S10.0551 (4)0.1282 (8)0.0650 (5)0.0243 (5)0.0012 (4)−0.0217 (5)

Geometric parameters (Å, °)

C16—N21.345 (4)C2—C31.385 (4)
C16—N31.360 (4)C2—H20.9300
C16—S11.6775 (16)C3—C41.405 (4)
C17—O11.3392C3—C71.505 (4)
C17—N21.350 (3)C4—C51.368 (4)
C17—C181.3777C4—C81.513 (4)
C18—C191.3358C5—C61.385 (4)
C18—H180.9300C5—H50.9300
C19—N31.360 (3)C6—H60.9300
C19—Cl21.7224C7—H7A0.9600
C20—O11.4659C7—H7B0.9600
C20—H20A0.9600C7—H7C0.9600
C20—H20B0.9600C8—H8A0.9600
C20—H20C0.9600C8—H8B0.9600
C16'—N2'1.3529C8—H8C0.9600
C16'—N3'1.3581C9—N11.446 (3)
C16'—S11.8159 (16)C9—C111.505 (4)
C19'—N3'1.3582C9—H9A0.9700
C19'—C18'1.3601C9—H9B0.9700
C19'—Cl2'1.7185C10—C151.384 (4)
C18'—C17'1.3581C10—C111.395 (4)
C18'—H18'0.9300C10—S11.778 (3)
C17'—O1'1.3535C11—C121.390 (4)
C17'—N2'1.3573C12—C131.373 (4)
C20'—O1'1.4629C12—Cl11.743 (3)
C20'—H20D0.9600C13—C141.362 (4)
C20'—H20E0.9600C13—H130.9300
C20'—H20F0.9600C14—C151.377 (4)
C1—C61.384 (4)C14—H140.9300
C1—C21.390 (3)C15—H150.9300
C1—N11.395 (3)N1—H10.8684
N2—C16—N3125.0 (2)C6—C5—H5118.6
N2—C16—S1122.89 (17)C1—C6—C5119.7 (3)
N3—C16—S1111.19 (16)C1—C6—H6120.2
O1—C17—N2118.44 (16)C5—C6—H6120.2
O1—C17—C18119.0C3—C7—H7A109.5
N2—C17—C18122.52 (16)C3—C7—H7B109.5
C19—C18—C17117.2H7A—C7—H7B109.5
C19—C18—H18121.4C3—C7—H7C109.5
C17—C18—H18121.4H7A—C7—H7C109.5
C18—C19—N3123.72 (16)H7B—C7—H7C109.5
C18—C19—Cl2121.0C4—C8—H8A109.5
N3—C19—Cl2115.28 (16)C4—C8—H8B109.5
C17—O1—C20119.8H8A—C8—H8B109.5
N2'—C16'—N3'120.0C4—C8—H8C109.5
N2'—C16'—S1116.68 (7)H8A—C8—H8C109.5
N3'—C16'—S1118.23 (6)H8B—C8—H8C109.5
N3'—C19'—C18'120.9N1—C9—C11108.6 (2)
N3'—C19'—Cl2'117.7N1—C9—H9A110.0
C18'—C19'—Cl2'121.4C11—C9—H9A110.0
C17'—C18'—C19'118.6N1—C9—H9B110.0
C17'—C18'—H18'120.7C11—C9—H9B110.0
C19'—C18'—H18'120.7H9A—C9—H9B108.3
O1'—C17'—N2'118.0C15—C10—C11121.0 (3)
O1'—C17'—C18'120.6C15—C10—S1117.5 (2)
N2'—C17'—C18'120.9C11—C10—S1121.3 (2)
O1'—C20'—H20D109.5C12—C11—C10116.3 (2)
O1'—C20'—H20E109.5C12—C11—C9121.2 (3)
H20D—C20'—H20E109.5C10—C11—C9122.5 (2)
O1'—C20'—H20F109.5C13—C12—C11122.9 (3)
H20D—C20'—H20F109.5C13—C12—Cl1116.8 (2)
H20E—C20'—H20F109.5C11—C12—Cl1120.3 (2)
C16'—N3'—C19'118.4C14—C13—C12119.5 (3)
C16'—N2'—C17'118.7C14—C13—H13120.2
C17'—O1'—C20'112.1C12—C13—H13120.2
C6—C1—C2118.2 (2)C13—C14—C15119.9 (3)
C6—C1—N1122.8 (2)C13—C14—H14120.1
C2—C1—N1118.9 (2)C15—C14—H14120.1
C3—C2—C1122.0 (3)C14—C15—C10120.4 (3)
C3—C2—H2119.0C14—C15—H15119.8
C1—C2—H2119.0C10—C15—H15119.8
C2—C3—C4119.2 (3)C1—N1—C9121.0 (2)
C2—C3—C7119.4 (3)C1—N1—H1113.8
C4—C3—C7121.3 (3)C9—N1—H1115.5
C5—C4—C3118.1 (3)C16—N2—C17115.8 (3)
C5—C4—C8121.2 (3)C16—N3—C19115.0 (3)
C3—C4—C8120.6 (3)C16—S1—C10105.87 (10)
C4—C5—C6122.7 (3)C16—S1—C16'9.0
C4—C5—H5118.6C10—S1—C16'100.69 (9)
O1—C17—C18—C19176.6S1—C10—C11—C95.4 (3)
N2—C17—C18—C19−2.7 (2)N1—C9—C11—C12−85.8 (3)
C17—C18—C19—N33.5 (2)N1—C9—C11—C1091.6 (3)
C17—C18—C19—Cl2−177.7C10—C11—C12—C131.2 (4)
N2—C17—O1—C20−6.7 (2)C9—C11—C12—C13178.7 (3)
C18—C17—O1—C20174.0C10—C11—C12—Cl1179.91 (19)
N3'—C19'—C18'—C17'2.7C9—C11—C12—Cl1−2.5 (3)
Cl2'—C19'—C18'—C17'−179.2C11—C12—C13—C140.2 (4)
C19'—C18'—C17'—O1'−175.4Cl1—C12—C13—C14−178.6 (2)
C19'—C18'—C17'—N2'−3.9C12—C13—C14—C15−0.5 (4)
N2'—C16'—N3'—C19'−18.4C13—C14—C15—C10−0.5 (4)
S1—C16'—N3'—C19'−172.43 (17)C11—C10—C15—C141.9 (4)
C18'—C19'—N3'—C16'8.3S1—C10—C15—C14177.0 (2)
Cl2'—C19'—N3'—C16'−169.9C6—C1—N1—C9−18.3 (4)
N3'—C16'—N2'—C17'17.4C2—C1—N1—C9165.0 (3)
S1—C16'—N2'—C17'171.73 (17)C11—C9—N1—C1−176.0 (2)
O1'—C17'—N2'—C16'165.7N3—C16—N2—C1710.0 (6)
C18'—C17'—N2'—C16'−6.0S1—C16—N2—C17177.98 (17)
N2'—C17'—O1'—C20'0.4O1—C17—N2—C16177.1 (2)
C18'—C17'—O1'—C20'172.2C18—C17—N2—C16−3.6 (4)
C6—C1—C2—C3−1.2 (4)N2—C16—N3—C19−9.2 (6)
N1—C1—C2—C3175.7 (2)S1—C16—N3—C19−178.4 (2)
C1—C2—C3—C40.1 (4)C18—C19—N3—C162.0 (4)
C1—C2—C3—C7−178.3 (3)Cl2—C19—N3—C16−176.9 (2)
C2—C3—C4—C50.9 (4)N2—C16—S1—C1010.2 (3)
C7—C3—C4—C5179.2 (3)N3—C16—S1—C10179.7 (3)
C2—C3—C4—C8−178.8 (3)N2—C16—S1—C16'−45.6 (3)
C7—C3—C4—C8−0.4 (4)N3—C16—S1—C16'123.9 (3)
C3—C4—C5—C6−0.9 (4)C15—C10—S1—C1695.5 (2)
C8—C4—C5—C6178.8 (3)C11—C10—S1—C16−89.4 (2)
C2—C1—C6—C51.2 (4)C15—C10—S1—C16'103.1 (2)
N1—C1—C6—C5−175.5 (3)C11—C10—S1—C16'−81.9 (2)
C4—C5—C6—C1−0.2 (4)N2'—C16'—S1—C16−35.93 (14)
C15—C10—C11—C12−2.2 (4)N3'—C16'—S1—C16118.9
S1—C10—C11—C12−177.06 (19)N2'—C16'—S1—C10−161.89 (12)
C15—C10—C11—C9−179.7 (2)N3'—C16'—S1—C10−7.04 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···N3'0.872.313.089 (3)150
N1—H1···N20.872.453.203 (4)145

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2926).

References

  • Blum, J. L. (2001). Oncologist, 6, 56–64. [PubMed]
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gompper, R., Mair, H.-J. & Polborn, K. (2004). Synthesis, pp. 696–708.
  • Joffe, A. M., Farley, J. D., Linden, D. & Goldsand, G. (1989). Am. J. Med.87, 332–338. [PubMed]
  • Michael, J. P. (2005). Nat. Prod. Rep.22, 627–646. [PubMed]
  • Nadal, E. & Olavarria, E. (2004). Int. J. Clin. Pract.58, 511–516. [PubMed]
  • Petersen, E. & Schmidt, D. R. (2003). Expert Rev. Anti Infect. Ther.1, 175–182. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography