PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2673–o2674.
Published online 2009 October 10. doi:  10.1107/S1600536809038665
PMCID: PMC2971453

(Z)-3-(9-Anthr­yl)-1-(4-methoxy­phen­yl)prop-2-en-1-one1

Abstract

The title chalcone derivative, C24H18O2, which consists of the substituted 4-methoxy­phenyl and anthracene rings bridged by the prop-2-en-1-one unit, exists in a cis configuration. The mol­ecule is twisted, the inter­planar angle between the benzene and anthracene rings being 69.50 (10)°. The meth­oxy group is coplanar with the attached benzene ring [C—O—C—C angle = 2.9 (3)°]. In the crystal structure, mol­ecules are linked into chains along the a axis by a weak C—H(...)O(enone) inter­action. The chains are stacked along the c axis. A C—H(...)π inter­action involving the benzene ring is observed.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For related structures, see: Fun et al. (2009 [triangle]); Suwunwong et al. (2009 [triangle]). For background to and applications of chalcones, see: Patil & Dharmaprakash (2008 [triangle]); Saydam et al. (2003 [triangle]); Svetlichny et al. (2007 [triangle]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2673-scheme1.jpg

Experimental

Crystal data

  • C24H18O2
  • M r = 338.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2673-efi1.jpg
  • a = 5.5018 (2) Å
  • b = 19.9215 (8) Å
  • c = 16.0500 (7) Å
  • β = 95.072 (2)°
  • V = 1752.26 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.54 × 0.27 × 0.09 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.958, T max = 0.993
  • 7966 measured reflections
  • 1721 independent reflections
  • 1545 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.087
  • S = 1.07
  • 1721 reflections
  • 236 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809038665/sj2659sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038665/sj2659Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Thailand Research Fund (TRF) and Prince of Songkla University are gratefully acknowledged. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Chalcones have been studied for their wide range of applications such as non-linear optical (Patil & Dharmaprakash, 2008) and fluorescent properties (Svetlichny et al., 2007) and biological activities (Saydam et al., 2003). We have previously reported crystal structures of chalcone derivatives containing the anthracene moiety which exist in both the E (Suwunwong et al., 2009) and Z configurations (Fun et al., 2009). The title compound was synthesized to study its fluorescent properties in addition to its antibacterial activity. The title compound shows interesting fluorescence properties which will be reported elsewhere. The crystal structure of the title compound was studied in order to elucidate its conformation which may affect the fluorescence properties.

The molecule of the title chalcone derivative, C24H18O2, (Fig. 1) exists in a Z configuration with respect to the C8=C9 ethenyl bond with the torsion angle C7–C8–C9–C10 being 3.6 (5)°. The anthracene ring system (C10–C23) is essentially planar with the root mean deviation of 0.050 (3) Å. The molecule is twisted as shown by the interplanar angle between the 4-methoxyphenyl and anthracene rings being 69.50 (10)°. The substituted methoxy group is coplanar with the phenyl ring with the torsion angle C24–O2–C3–C2 being 2.9 (3)°. The prop-2-en-1-one unit (C7—C9/O1) is twisted with the torsion angle O1–C7–C8–C9 of 44.5 (4)°. The orientation of the prop-2-en-1-one unit with respect to the 4-methoxyphenyl and anthracene rings is indicated by the torsion angles C1–C6–C7–C8 = 15.6 (4) and C7–C8–C9–C10 = 3.6 (5) °. The bond distances (Allen et al., 1987) and angles are normal and comparable to those found in closely related structures (Fun et al., 2009; Suwunwong et al., 2009).

In the crystal packing, the molecules are linked into chains along the a axis through the enone unit by a weak C8—H8A···O1 interaction (Fig. 2, Table 1). These chains are stacked along the c axis involving a C—H···π interaction (Table 1); Cg1 is the centroid of the C1–C6 ring.

Experimental

The title compound was synthesized by condensation of anthracene-9-carbaldehyde (0.41 g, 2 mmol) with 4-methoxyacetophenone (0.30 g, 2 mmol) in ethanol (30 ml) in the presence of 30% aqueous NaOH (5 ml) at room temperature. After stirring for 3 hr, a yellow solid appeared and was then collected by filtration, washed with acetone and dried in air. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from ethanol by the slow evaporation of the solvent at room temperature after several days, Mp. 440–441 K.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic and CH and C—H = 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.73 Å from C18 and the deepest hole is located at 1.39 Å from C17. A total of 1128 Friedel pairs were merged before final refinement as there is no large anomalous dispersion for the determination of the absolute structure.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of the title compound viewed along the b axis, showing chains running along the a axis. Weak C—H···O interactions are shown as dashed lines.

Crystal data

C24H18O2F(000) = 712
Mr = 338.38Dx = 1.283 Mg m3
Monoclinic, CcMelting point = 440–441 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 5.5018 (2) ÅCell parameters from 1721 reflections
b = 19.9215 (8) Åθ = 2.0–26.0°
c = 16.0500 (7) ŵ = 0.08 mm1
β = 95.072 (2)°T = 293 K
V = 1752.26 (12) Å3Plate, yellow
Z = 40.54 × 0.27 × 0.09 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer1721 independent reflections
Radiation source: fine-focus sealed tube1545 reflections with I > 2σ(I)
graphiteRint = 0.023
Detector resolution: 8.33 pixels mm-1θmax = 26.0°, θmin = 2.0°
ω scansh = −6→6
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −24→23
Tmin = 0.958, Tmax = 0.993l = −19→19
7966 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0414P)2 + 0.4575P] where P = (Fo2 + 2Fc2)/3
1721 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.14 e Å3
2 restraintsΔρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.7379 (3)0.26049 (10)0.44324 (14)0.0584 (5)
O20.5958 (4)−0.04663 (10)0.52663 (15)0.0663 (6)
C10.3633 (5)0.11209 (14)0.43620 (17)0.0469 (7)
H1A0.22610.12940.40550.056*
C20.3691 (5)0.04454 (15)0.45676 (18)0.0514 (7)
H2A0.23820.01690.43940.062*
C30.5709 (5)0.01859 (14)0.50326 (17)0.0469 (6)
C40.7641 (5)0.06087 (14)0.52870 (18)0.0498 (7)
H4A0.89920.04370.56070.060*
C50.7586 (4)0.12742 (14)0.50729 (17)0.0448 (6)
H5A0.89070.15480.52430.054*
C60.5565 (4)0.15470 (13)0.46010 (15)0.0394 (6)
C70.5525 (4)0.22645 (13)0.43565 (16)0.0413 (6)
C80.3147 (4)0.25664 (13)0.40406 (18)0.0454 (6)
H8A0.17950.24560.43220.054*
C90.2783 (5)0.29786 (13)0.33936 (17)0.0451 (6)
H9A0.12140.31500.32860.054*
C100.4614 (4)0.31959 (13)0.28220 (16)0.0411 (6)
C110.5862 (5)0.27224 (13)0.23652 (16)0.0428 (6)
C120.5348 (6)0.20192 (15)0.23660 (18)0.0527 (7)
H12A0.41260.18590.26780.063*
C130.6601 (6)0.15829 (16)0.1923 (2)0.0634 (9)
H13A0.62050.11290.19270.076*
C140.8495 (7)0.18016 (18)0.1455 (2)0.0670 (9)
H14A0.93710.14920.11670.080*
C150.9040 (6)0.24607 (17)0.14224 (18)0.0580 (8)
H15A1.02960.26010.11120.070*
C160.7721 (5)0.29480 (14)0.18577 (15)0.0460 (6)
C170.8194 (5)0.36309 (15)0.17973 (16)0.0491 (7)
H17A0.94270.37730.14780.059*
C180.6874 (5)0.41081 (14)0.22015 (16)0.0463 (7)
C190.7276 (6)0.48094 (15)0.21182 (19)0.0559 (8)
H19A0.84960.49570.17960.067*
C200.5933 (6)0.52656 (16)0.2495 (2)0.0622 (8)
H20A0.62110.57210.24220.075*
C210.4106 (6)0.50528 (17)0.2999 (2)0.0616 (8)
H21A0.31690.53700.32510.074*
C220.3704 (5)0.43918 (16)0.31209 (18)0.0529 (7)
H22A0.25330.42630.34730.063*
C230.5028 (5)0.38878 (13)0.27229 (16)0.0426 (6)
C240.4045 (7)−0.09228 (16)0.4985 (3)0.0761 (10)
H24A0.4477−0.13680.51730.114*
H24B0.3820−0.09160.43850.114*
H24C0.2557−0.07900.52090.114*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0426 (10)0.0571 (12)0.0750 (14)−0.0105 (10)0.0021 (9)0.0098 (11)
O20.0777 (15)0.0442 (12)0.0741 (15)−0.0021 (11)−0.0085 (12)0.0055 (11)
C10.0362 (13)0.0538 (17)0.0499 (15)−0.0038 (12)−0.0007 (11)0.0081 (13)
C20.0466 (15)0.0532 (17)0.0532 (16)−0.0111 (13)−0.0017 (13)0.0015 (13)
C30.0513 (15)0.0464 (16)0.0435 (15)0.0022 (12)0.0071 (12)0.0015 (12)
C40.0450 (15)0.0519 (17)0.0514 (16)0.0072 (13)−0.0026 (12)0.0011 (13)
C50.0340 (13)0.0535 (16)0.0471 (15)−0.0037 (12)0.0041 (11)−0.0032 (12)
C60.0337 (12)0.0493 (16)0.0365 (13)−0.0027 (11)0.0101 (10)0.0015 (11)
C70.0372 (13)0.0498 (15)0.0387 (13)−0.0049 (12)0.0132 (11)0.0020 (12)
C80.0357 (13)0.0479 (15)0.0543 (16)−0.0020 (12)0.0133 (11)0.0064 (13)
C90.0363 (13)0.0449 (16)0.0542 (15)0.0019 (11)0.0042 (11)0.0035 (13)
C100.0381 (13)0.0470 (16)0.0377 (13)−0.0006 (11)−0.0003 (10)0.0045 (11)
C110.0459 (14)0.0439 (15)0.0376 (13)0.0007 (11)−0.0018 (11)0.0044 (12)
C120.0589 (17)0.0486 (16)0.0505 (16)−0.0023 (14)0.0040 (14)0.0033 (14)
C130.084 (2)0.0470 (17)0.0592 (18)0.0052 (16)0.0048 (17)−0.0025 (15)
C140.084 (2)0.063 (2)0.0557 (18)0.0208 (18)0.0146 (17)−0.0049 (16)
C150.0646 (19)0.068 (2)0.0430 (16)0.0071 (16)0.0165 (14)0.0037 (14)
C160.0495 (16)0.0547 (17)0.0335 (13)0.0020 (13)0.0015 (11)0.0041 (12)
C170.0483 (15)0.0615 (19)0.0384 (14)−0.0058 (13)0.0083 (12)0.0093 (13)
C180.0499 (15)0.0505 (17)0.0370 (13)−0.0056 (13)−0.0043 (12)0.0073 (12)
C190.0635 (19)0.0537 (19)0.0496 (16)−0.0158 (15)0.0000 (14)0.0084 (14)
C200.079 (2)0.0415 (17)0.063 (2)−0.0042 (16)−0.0104 (17)0.0035 (15)
C210.070 (2)0.0494 (19)0.0640 (19)0.0076 (15)−0.0005 (16)−0.0029 (15)
C220.0531 (16)0.0531 (19)0.0520 (17)0.0021 (14)0.0027 (13)0.0015 (14)
C230.0438 (14)0.0436 (15)0.0390 (13)−0.0005 (12)−0.0037 (11)0.0029 (11)
C240.093 (3)0.052 (2)0.082 (2)−0.0170 (18)−0.003 (2)0.0025 (18)

Geometric parameters (Å, °)

O1—C71.222 (3)C12—H12A0.9300
O2—C31.356 (3)C13—C141.407 (5)
O2—C241.433 (4)C13—H13A0.9300
C1—C21.385 (4)C14—C151.349 (5)
C1—C61.387 (4)C14—H14A0.9300
C1—H1A0.9300C15—C161.431 (4)
C2—C31.382 (4)C15—H15A0.9300
C2—H2A0.9300C16—C171.390 (4)
C3—C41.389 (4)C17—C181.391 (4)
C4—C51.369 (4)C17—H17A0.9300
C4—H4A0.9300C18—C191.423 (4)
C5—C61.399 (4)C18—C231.440 (4)
C5—H5A0.9300C19—C201.348 (5)
C6—C71.482 (4)C19—H19A0.9300
C7—C81.488 (4)C20—C211.411 (5)
C8—C91.325 (4)C20—H20A0.9300
C8—H8A0.9300C21—C221.352 (5)
C9—C101.486 (4)C21—H21A0.9300
C9—H9A0.9300C22—C231.425 (4)
C10—C231.408 (4)C22—H22A0.9300
C10—C111.410 (4)C24—H24A0.9600
C11—C121.429 (4)C24—H24B0.9600
C11—C161.435 (4)C24—H24C0.9600
C12—C131.350 (4)
C3—O2—C24117.9 (2)C12—C13—H13A119.4
C2—C1—C6121.8 (3)C14—C13—H13A119.4
C2—C1—H1A119.1C15—C14—C13120.0 (3)
C6—C1—H1A119.1C15—C14—H14A120.0
C3—C2—C1119.5 (3)C13—C14—H14A120.0
C3—C2—H2A120.2C14—C15—C16121.2 (3)
C1—C2—H2A120.2C14—C15—H15A119.4
O2—C3—C2124.4 (3)C16—C15—H15A119.4
O2—C3—C4116.4 (2)C17—C16—C15121.6 (3)
C2—C3—C4119.3 (3)C17—C16—C11119.5 (2)
C5—C4—C3120.9 (2)C15—C16—C11118.9 (3)
C5—C4—H4A119.5C16—C17—C18121.9 (2)
C3—C4—H4A119.5C16—C17—H17A119.1
C4—C5—C6120.7 (2)C18—C17—H17A119.1
C4—C5—H5A119.6C17—C18—C19122.4 (3)
C6—C5—H5A119.6C17—C18—C23119.1 (2)
C1—C6—C5117.7 (2)C19—C18—C23118.5 (3)
C1—C6—C7121.6 (2)C20—C19—C18121.6 (3)
C5—C6—C7120.7 (2)C20—C19—H19A119.2
O1—C7—C6121.1 (2)C18—C19—H19A119.2
O1—C7—C8120.7 (2)C19—C20—C21120.1 (3)
C6—C7—C8118.2 (2)C19—C20—H20A119.9
C9—C8—C7125.8 (2)C21—C20—H20A119.9
C9—C8—H8A117.1C22—C21—C20120.6 (3)
C7—C8—H8A117.1C22—C21—H21A119.7
C8—C9—C10126.9 (2)C20—C21—H21A119.7
C8—C9—H9A116.5C21—C22—C23121.7 (3)
C10—C9—H9A116.5C21—C22—H22A119.2
C23—C10—C11120.3 (2)C23—C22—H22A119.2
C23—C10—C9118.7 (2)C10—C23—C22123.0 (2)
C11—C10—C9120.9 (2)C10—C23—C18119.6 (2)
C10—C11—C12123.4 (2)C22—C23—C18117.4 (2)
C10—C11—C16119.3 (2)O2—C24—H24A109.5
C12—C11—C16117.3 (2)O2—C24—H24B109.5
C13—C12—C11121.4 (3)H24A—C24—H24B109.5
C13—C12—H12A119.3O2—C24—H24C109.5
C11—C12—H12A119.3H24A—C24—H24C109.5
C12—C13—C14121.2 (3)H24B—C24—H24C109.5
C6—C1—C2—C30.8 (4)C12—C13—C14—C15−2.0 (5)
C24—O2—C3—C22.6 (4)C13—C14—C15—C160.0 (5)
C24—O2—C3—C4−177.4 (3)C14—C15—C16—C17−177.0 (3)
C1—C2—C3—O2−179.8 (3)C14—C15—C16—C112.8 (4)
C1—C2—C3—C40.1 (4)C10—C11—C16—C17−2.6 (4)
O2—C3—C4—C5179.0 (3)C12—C11—C16—C17176.3 (2)
C2—C3—C4—C5−1.0 (4)C10—C11—C16—C15177.6 (2)
C3—C4—C5—C60.8 (4)C12—C11—C16—C15−3.4 (3)
C2—C1—C6—C5−1.0 (4)C15—C16—C17—C18178.3 (2)
C2—C1—C6—C7178.0 (2)C11—C16—C17—C18−1.5 (4)
C4—C5—C6—C10.1 (4)C16—C17—C18—C19−177.5 (3)
C4—C5—C6—C7−178.9 (2)C16—C17—C18—C232.4 (4)
C1—C6—C7—O1−166.3 (3)C17—C18—C19—C20178.0 (3)
C5—C6—C7—O112.6 (4)C23—C18—C19—C20−1.8 (4)
C1—C6—C7—C815.6 (4)C18—C19—C20—C211.2 (5)
C5—C6—C7—C8−165.4 (2)C19—C20—C21—C220.9 (5)
O1—C7—C8—C944.5 (4)C20—C21—C22—C23−2.5 (5)
C6—C7—C8—C9−137.5 (3)C11—C10—C23—C22175.5 (2)
C7—C8—C9—C103.6 (5)C9—C10—C23—C22−2.5 (4)
C8—C9—C10—C23−124.0 (3)C11—C10—C23—C18−4.8 (3)
C8—C9—C10—C1158.1 (4)C9—C10—C23—C18177.2 (2)
C23—C10—C11—C12−173.1 (2)C21—C22—C23—C10−178.5 (3)
C9—C10—C11—C124.8 (4)C21—C22—C23—C181.8 (4)
C23—C10—C11—C165.7 (4)C17—C18—C23—C100.8 (3)
C9—C10—C11—C16−176.3 (2)C19—C18—C23—C10−179.3 (2)
C10—C11—C12—C13−179.6 (3)C17—C18—C23—C22−179.5 (2)
C16—C11—C12—C131.5 (4)C19—C18—C23—C220.4 (3)
C11—C12—C13—C141.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.932.473.290 (3)147
C24—H24A···O1ii0.962.593.176 (4)120
C17—H17A···Cg1iii0.932.893.694 (3)145

Symmetry codes: (i) x−1, y, z; (ii) x−1/2, y−1/2, z; (iii) x+1/2, −y+1/2, z−1/2.

Footnotes

1This paper is dedicated to the late His Royal Highness Prince Mahidol of Songkla for his contributions to the development of medical education in Thailand on the occasion of Mahidol Day which falls on the 24th September.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2659).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Fun, H.-K., Suwunwong, T., Boonnak, N. & Chantrapromma, S. (2009). Acta Cryst. E65, o2168–o2169. [PMC free article] [PubMed]
  • Patil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett 62, 451–453.
  • Saydam, G., Aydin, H. H., Sahin, F., Kucukoglu, O., Erciyas, E., Terzioglu, E., Buyukkececi, F. & Omay, S. B. (2003). Leuk. Res 27, 57–64. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Suwunwong, T., Chantrapromma, S., Karalai, C., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o420–o421. [PMC free article] [PubMed]
  • Svetlichny, V. Y., Merola, F., Dobretsov, G. E., Gularyan, S. K. & Syrejshchikova, T. I. (2007). Chem. Phys. Lipids, 145, 13–26. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography