PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2782.
Published online 2009 October 17. doi:  10.1107/S1600536809041750
PMCID: PMC2971447

2-Benzyl-myo-inositol monohydrate

Abstract

The title structure, C13H18O6·H2O, contains two independent 2-benzyl-myo-inositol and water mol­ecules. In the crystal, the mol­ecules are strongly hydrogen bonded into an infinite two dimensional network utilizing all OH protons.

Related literature

For puckering parameters, see: Cremer & Pople (1975 [triangle]). For related structures, see: Khan et al. (2007 [triangle]); Simperler et al. (2006 [triangle]); Gibson et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2782-scheme1.jpg

Experimental

Crystal data

  • C13H18O6·H2O
  • M r = 288.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2782-efi1.jpg
  • a = 7.4616 (3) Å
  • b = 33.7688 (13) Å
  • c = 10.4528 (4) Å
  • β = 90.616 (2)°
  • V = 2633.63 (18) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 121 K
  • 0.75 × 0.72 × 0.31 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.657, T max = 0.746
  • 67666 measured reflections
  • 8428 independent reflections
  • 7368 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.110
  • S = 1.08
  • 8428 reflections
  • 385 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT and SADABS (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]), Mercury (Macrae, 2006 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041750/ez2193sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041750/ez2193Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the New Zealand Foundation for Research Science and Technology (grant contract No. C08X0701). We thank Drs J. Wikaira and C. Fitchett of the University of Canterbury for their assistance.

supplementary crystallographic information

Comment

The enzyme myo-inositol oxygenase (MIOX) is over expressed in the kidney tissue of patients suffering from type II diabetes mellitus and defects in the metabolism of inositol sugars are also strongly associated with diabetes. Because MIOX is responsible for the first committed step in the catabolism of inositols, we were interested in developing chemical inhibitors of this enzyme. 2-Benzyl-myo-inositol is a candidate substrate-like (enzyme) inhibitor: specifically, inclusion of the equatorial benzyl group was designed to take advantage of a hydrophobic binding pocket identified adjacent to the MIOX active site.

The asymmetric unit of the title compound (I) contains two independent 2-benzyl-myo-inositol molecules and two waters of crystallization. The two molecules (Fig. 1) are essentially identical with chirality designations for carbons 1,2,4, & 6 of of R,S,R, & S and with the non-hydrogen atoms having a r.m.s. bond fit of 0.0043Å & the bond angles an r.m.s. fit of 1.93° (Spek, 2009). There is a slight twist between the two rings; torsion angles [var phi] are C2—C7—C8—C13 - 88.67 (13),-92.34 (12)° for unprimed & primed molecules respectively. The inositol rings are in chair conformations with Cremer & Pople (1975) parameters Q, θ, [var phi] of 0.5601 (10),0.5689 (10) Å, 176.85 (10),172.98 (10)° and 275.6 (19),333.1 (8)° respectively compared with 0.576 (2) Å, 177.9 (2) and 245 (7)° for a "parent" myo-inositol (Khan et al., 2007).

An extensive set of 14 hydrogen bonds involves nearly all available donors and acceptors (Table 1); all the hydrogen donors were located from difference maps, but with only the water hydrogen atomic positions refined with restrained thermal parameters. The two remaining water hydrogen atoms (H1WB & H2WB) are involved in O–H···π interactions with the phenyl rings (Table 1: Cg1,Cg2 are the centres of phenyl rings C8—C13 & C8'-C13' respectively). Overall, the molecules are strongly hydrogen bonded into an infinite two dimensional network with the benzyl groups making van der Waal contacts between the layers (Fig. 2). One antiparallel "double chain" link is observed in the complex system reflecting aspects of myo-inositol packing (Simperler et al., 2006).

Experimental

2-Benzyl-1,3,4,5,6-penta-O-benzyl-myo-inositol (78 mg, 0.11 mmol) (Gibson et al., 2009) was dissolved in THF (5 ml) and palladium hydroxide (20% on carbon, wet, 65 mg) was added; the air was replaced with hydrogen (gasbag, 1 atm) and the mixture was stirred at RT for 1 h. The flask was aerated and left overnight. Next morning the solution was filtered through a pad of filter-aid, rinsed with MeOH and preabsorbed on silica (~0.5 g) and purified by chromatography (9 g silica, CHCl3/MeOH = 3:1 v/v) which gave the product as a white solid. This was recrystallized from MeOH (25 mg, 85%). 1H-NMR (500 MHz, methanol-d4) δ 7.47–7.37 (m, 2H), 7.28–7.22 (m, 2H), 7.21–7.15 (m, 1H), 3.56 (t, J = 9.4 Hz, 2H), 3.05 (s, 2H), 2.99 (d, J = 9.4 Hz, 2H), 2.84 (t, J = 9.4 Hz, 1H); 13C-NMR (126 MHz, methanol-d4) δ 138.4, 131.8, 129.1, 127.4, 77.9, 75.8, 75.4, 72.4, 40.8; HRMS (M+Na)+ C13H18O6Na: calcd 293.1001; found 293.1004; micro anal. for C13H18O6.H2O: C (calcd. 54.16%) 54.64; H (6.99%) 6.97.

Refinement

All H atoms on the inositol molecules were constrained to their expected geometries [C–H 0.95, 0.99 & 1.00; O–H 0.84 Å] with Uiso = 1.2 Ueq of the parent atom. All water H atoms were located on difference Fourier maps and refined with Uiso = 1.5 Ueq (O).

Figures

Fig. 1.
Asymmetric unit contents of (I) (Farrugia, 1997).
Fig. 2.
Packing diagram (Macrae et al., 2006) of (I) viewed down the a axis with some atom labels. Some hydrogen bonds are shown as dashed lines (see text); H atoms not involved in hydrogen bonds are omitted for clarity.

Crystal data

C13H18O6·H2OF(000) = 1232
Mr = 288.29Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9735 reflections
a = 7.4616 (3) Åθ = 2.4–31.2°
b = 33.7688 (13) ŵ = 0.12 mm1
c = 10.4528 (4) ÅT = 121 K
β = 90.616 (2)°Block, colourless
V = 2633.63 (18) Å30.75 × 0.72 × 0.31 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer8428 independent reflections
Radiation source: fine-focus sealed tube7368 reflections with I > 2σ(I)
graphiteRint = 0.031
Detector resolution: 8.333 pixels mm-1θmax = 31.3°, θmin = 2.0°
[var phi] and ω scansh = −10→10
Absorption correction: multi-scan (Blessing, 1995)k = −48→48
Tmin = 0.657, Tmax = 0.746l = −15→14
67666 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0524P)2 + 1.1394P] where P = (Fo2 + 2Fc2)/3
8428 reflections(Δ/σ)max = 0.001
385 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.50902 (10)0.38866 (2)0.32399 (7)0.01471 (14)
H1O0.59170.40550.32030.018*
O20.60347 (10)0.41015 (2)0.57055 (7)0.01483 (14)
H2O0.63320.40830.64810.018*
O30.35266 (11)0.39608 (3)0.76876 (7)0.01909 (16)
H3O0.27460.40300.82160.023*
O40.11845 (10)0.46202 (2)0.71154 (7)0.01597 (14)
H4O0.16120.47030.78120.019*
O50.19999 (12)0.50334 (2)0.48900 (8)0.01982 (16)
H5O0.14480.51050.42240.024*
O60.27845 (11)0.45380 (2)0.26950 (7)0.01601 (14)
H6O0.20200.43670.24810.019*
C10.37784 (12)0.40152 (3)0.41306 (8)0.01044 (16)
H10.26380.38710.39330.013*
C20.43530 (12)0.39073 (3)0.55006 (9)0.01108 (16)
C30.29331 (13)0.40579 (3)0.64287 (9)0.01208 (16)
H30.17810.39160.62490.014*
C40.26177 (13)0.45019 (3)0.62932 (9)0.01216 (16)
H40.37350.46480.65390.015*
C50.20777 (13)0.46107 (3)0.49359 (9)0.01271 (17)
H50.08650.44990.47370.015*
C60.34184 (13)0.44575 (3)0.39682 (8)0.01132 (16)
H60.45740.46020.41020.014*
C70.46317 (14)0.34555 (3)0.56367 (10)0.01558 (18)
H7A0.56100.33740.50600.019*
H7B0.50290.33980.65240.019*
C80.30059 (15)0.32061 (3)0.53398 (10)0.01688 (19)
C90.27011 (18)0.30651 (4)0.41014 (12)0.0247 (2)
H90.35230.31280.34440.030*
C100.1205 (2)0.28331 (4)0.38195 (15)0.0364 (3)
H100.10210.27370.29740.044*
C11−0.0017 (2)0.27418 (4)0.47645 (18)0.0414 (4)
H11−0.10400.25850.45690.050*
C120.0266 (2)0.28815 (4)0.59964 (16)0.0351 (3)
H12−0.05690.28210.66480.042*
C130.17685 (17)0.31106 (4)0.62839 (12)0.0240 (2)
H130.19540.32030.71330.029*
O1'−0.02235 (10)0.60830 (2)0.78156 (7)0.01499 (14)
H1'O0.01790.61220.70790.018*
O2'−0.10251 (10)0.58343 (2)1.02760 (7)0.01449 (14)
H2'O−0.18530.59420.98490.017*
O3'0.15758 (10)0.59222 (2)1.22426 (6)0.01522 (14)
H3'O0.07100.57771.24460.018*
O4'0.35488 (10)0.52508 (2)1.15761 (7)0.01644 (15)
H4'O0.31790.50321.18540.020*
O5'0.30650 (11)0.49278 (2)0.90825 (7)0.01634 (15)
H5'O0.41340.48690.89240.020*
O6'0.23721 (11)0.55224 (2)0.71019 (7)0.01714 (15)
H6'O0.19790.53270.66910.021*
C1'0.11963 (12)0.59546 (3)0.86443 (8)0.01071 (16)
H1'0.22840.61180.84650.013*
C2'0.06277 (12)0.60309 (3)1.00248 (8)0.01054 (16)
C3'0.20310 (12)0.58499 (3)1.09446 (8)0.01089 (16)
H3'0.32020.59831.07810.013*
C4'0.22744 (13)0.54078 (3)1.06806 (9)0.01159 (16)
H4'0.11010.52691.07880.014*
C5'0.29354 (13)0.53434 (3)0.93189 (9)0.01157 (16)
H5'0.41400.54690.92200.014*
C6'0.16254 (13)0.55231 (3)0.83577 (8)0.01145 (16)
H6'0.04900.53660.83510.014*
C7'0.03668 (14)0.64794 (3)1.02676 (10)0.01511 (18)
H7'A−0.06510.65720.97320.018*
H7'B0.00290.65161.11730.018*
C8'0.19624 (14)0.67385 (3)0.99995 (10)0.01606 (18)
C9'0.22323 (17)0.68948 (3)0.87823 (11)0.0222 (2)
H9'0.14020.68360.81130.027*
C10'0.3703 (2)0.71355 (4)0.85360 (15)0.0336 (3)
H10'0.38700.72410.77030.040*
C11'0.4927 (2)0.72223 (4)0.95047 (18)0.0396 (4)
H11'0.59360.73850.93360.048*
C12'0.4666 (2)0.70707 (4)1.07170 (17)0.0365 (3)
H12'0.54970.71301.13840.044*
C13'0.31951 (17)0.68313 (4)1.09646 (12)0.0249 (2)
H13'0.30280.67301.18020.030*
O1W0.91098 (12)0.37731 (3)0.45945 (8)0.02411 (18)
H1WA0.923 (3)0.3553 (6)0.4917 (19)0.036*
H1WB0.817 (3)0.3882 (6)0.4883 (18)0.036*
O2W0.40295 (12)0.38183 (3)0.07198 (8)0.02373 (18)
H2WA0.429 (3)0.3826 (6)0.1511 (19)0.036*
H2WB0.429 (3)0.3596 (6)0.0440 (18)0.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0152 (3)0.0176 (3)0.0114 (3)0.0019 (3)0.0024 (2)−0.0026 (2)
O20.0117 (3)0.0222 (4)0.0106 (3)−0.0032 (3)−0.0024 (2)−0.0004 (2)
O30.0227 (4)0.0257 (4)0.0089 (3)0.0054 (3)0.0015 (3)0.0026 (3)
O40.0161 (3)0.0180 (4)0.0138 (3)0.0009 (3)0.0039 (2)−0.0048 (3)
O50.0290 (4)0.0106 (3)0.0199 (4)0.0039 (3)0.0008 (3)0.0001 (3)
O60.0208 (4)0.0157 (3)0.0114 (3)−0.0009 (3)−0.0036 (3)0.0036 (2)
C10.0105 (4)0.0115 (4)0.0093 (4)0.0011 (3)−0.0002 (3)−0.0004 (3)
C20.0104 (4)0.0128 (4)0.0100 (4)0.0004 (3)−0.0009 (3)0.0004 (3)
C30.0127 (4)0.0143 (4)0.0093 (4)0.0009 (3)0.0007 (3)0.0009 (3)
C40.0120 (4)0.0128 (4)0.0117 (4)0.0000 (3)0.0020 (3)−0.0020 (3)
C50.0142 (4)0.0106 (4)0.0133 (4)0.0010 (3)0.0004 (3)−0.0005 (3)
C60.0128 (4)0.0114 (4)0.0097 (4)0.0000 (3)−0.0005 (3)0.0007 (3)
C70.0160 (4)0.0140 (4)0.0168 (4)0.0033 (3)−0.0009 (3)0.0019 (3)
C80.0198 (5)0.0103 (4)0.0205 (5)0.0029 (3)−0.0010 (4)0.0024 (3)
C90.0327 (6)0.0165 (5)0.0249 (5)0.0020 (4)−0.0045 (4)−0.0022 (4)
C100.0483 (9)0.0182 (6)0.0424 (8)−0.0022 (5)−0.0191 (6)−0.0043 (5)
C110.0362 (8)0.0206 (6)0.0672 (11)−0.0098 (5)−0.0168 (7)0.0085 (6)
C120.0281 (6)0.0232 (6)0.0541 (9)−0.0047 (5)0.0015 (6)0.0147 (6)
C130.0252 (6)0.0179 (5)0.0288 (6)0.0012 (4)0.0028 (4)0.0072 (4)
O1'0.0140 (3)0.0199 (4)0.0110 (3)0.0031 (3)−0.0019 (2)0.0028 (2)
O2'0.0097 (3)0.0198 (4)0.0139 (3)−0.0019 (3)0.0002 (2)0.0035 (2)
O3'0.0168 (3)0.0196 (4)0.0093 (3)−0.0008 (3)0.0001 (2)−0.0013 (2)
O4'0.0172 (3)0.0157 (3)0.0163 (3)0.0016 (3)−0.0048 (3)0.0046 (3)
O5'0.0170 (4)0.0108 (3)0.0212 (3)0.0024 (3)−0.0001 (3)−0.0027 (3)
O6'0.0246 (4)0.0159 (3)0.0111 (3)−0.0030 (3)0.0038 (3)−0.0034 (2)
C1'0.0106 (4)0.0115 (4)0.0100 (4)0.0008 (3)−0.0007 (3)0.0004 (3)
C2'0.0094 (4)0.0119 (4)0.0103 (4)0.0001 (3)0.0007 (3)0.0004 (3)
C3'0.0110 (4)0.0120 (4)0.0096 (4)0.0002 (3)−0.0006 (3)−0.0001 (3)
C4'0.0114 (4)0.0118 (4)0.0115 (4)0.0004 (3)−0.0016 (3)0.0014 (3)
C5'0.0116 (4)0.0102 (4)0.0129 (4)0.0007 (3)−0.0003 (3)−0.0004 (3)
C6'0.0121 (4)0.0121 (4)0.0101 (4)−0.0003 (3)0.0001 (3)0.0001 (3)
C7'0.0161 (4)0.0129 (4)0.0163 (4)0.0039 (3)0.0016 (3)−0.0010 (3)
C8'0.0190 (5)0.0099 (4)0.0193 (4)0.0026 (3)−0.0009 (3)−0.0018 (3)
C9'0.0282 (6)0.0156 (5)0.0227 (5)0.0010 (4)0.0026 (4)0.0021 (4)
C10'0.0416 (8)0.0177 (5)0.0417 (7)−0.0033 (5)0.0149 (6)0.0036 (5)
C11'0.0317 (7)0.0208 (6)0.0666 (10)−0.0102 (5)0.0100 (7)−0.0067 (6)
C12'0.0286 (7)0.0259 (6)0.0547 (9)−0.0043 (5)−0.0089 (6)−0.0121 (6)
C13'0.0264 (6)0.0202 (5)0.0278 (6)0.0008 (4)−0.0070 (4)−0.0047 (4)
O1W0.0194 (4)0.0309 (5)0.0221 (4)0.0063 (3)0.0047 (3)0.0091 (3)
O2W0.0206 (4)0.0337 (5)0.0168 (4)0.0071 (3)−0.0031 (3)−0.0046 (3)

Geometric parameters (Å, °)

O1—C11.4259 (11)O2'—C2'1.4275 (11)
O1—H1O0.8400O2'—H2'O0.8400
O2—C21.4299 (12)O3'—C3'1.4233 (11)
O2—H2O0.8400O3'—H3'O0.8400
O3—C31.4222 (11)O4'—C4'1.4291 (11)
O3—H3O0.8400O4'—H4'O0.8400
O4—C41.4358 (12)O5'—C5'1.4284 (12)
O4—H4O0.8400O5'—H5'O0.8400
O5—C51.4293 (12)O6'—C6'1.4315 (11)
O5—H5O0.8400O6'—H6'O0.8400
O6—C61.4336 (11)C1'—C6'1.5223 (13)
O6—H6O0.8400C1'—C2'1.5303 (12)
C1—C61.5268 (13)C1'—H1'1.0000
C1—C21.5343 (12)C2'—C3'1.5403 (13)
C1—H11.0000C2'—C7'1.5481 (14)
C2—C31.5312 (13)C3'—C4'1.5295 (13)
C2—C71.5460 (14)C3'—H3'1.0000
C3—C41.5240 (14)C4'—C5'1.5269 (13)
C3—H31.0000C4'—H4'1.0000
C4—C51.5159 (13)C5'—C6'1.5206 (13)
C4—H41.0000C5'—H5'1.0000
C5—C61.5209 (13)C6'—H6'1.0000
C5—H51.0000C7'—C8'1.5064 (15)
C6—H61.0000C7'—H7'A0.9900
C7—C81.5064 (15)C7'—H7'B0.9900
C7—H7A0.9900C8'—C13'1.3935 (16)
C7—H7B0.9900C8'—C9'1.3941 (15)
C8—C91.3957 (16)C9'—C10'1.3921 (18)
C8—C131.3964 (16)C9'—H9'0.9500
C9—C101.3925 (19)C10'—C11'1.387 (2)
C9—H90.9500C10'—H10'0.9500
C10—C111.386 (3)C11'—C12'1.382 (3)
C10—H100.9500C11'—H11'0.9500
C11—C121.385 (3)C12'—C13'1.390 (2)
C11—H110.9500C12'—H12'0.9500
C12—C131.3921 (19)C13'—H13'0.9500
C12—H120.9500O1W—H1WA0.82 (2)
C13—H130.9500O1W—H1WB0.85 (2)
O1'—C1'1.4286 (11)O2W—H2WA0.85 (2)
O1'—H1'O0.8400O2W—H2WB0.83 (2)
C1—O1—H1O109.5C2'—O2'—H2'O109.5
C2—O2—H2O109.5C3'—O3'—H3'O109.5
C3—O3—H3O109.5C4'—O4'—H4'O109.5
C4—O4—H4O109.5C5'—O5'—H5'O109.5
C5—O5—H5O109.5C6'—O6'—H6'O109.5
C6—O6—H6O109.5O1'—C1'—C6'109.10 (7)
O1—C1—C6110.28 (7)O1'—C1'—C2'108.02 (7)
O1—C1—C2110.50 (7)C6'—C1'—C2'114.06 (8)
C6—C1—C2112.54 (7)O1'—C1'—H1'108.5
O1—C1—H1107.8C6'—C1'—H1'108.5
C6—C1—H1107.8C2'—C1'—H1'108.5
C2—C1—H1107.8O2'—C2'—C1'110.12 (7)
O2—C2—C3111.39 (8)O2'—C2'—C3'106.47 (7)
O2—C2—C1105.48 (7)C1'—C2'—C3'109.16 (7)
C3—C2—C1108.91 (8)O2'—C2'—C7'108.32 (8)
O2—C2—C7108.77 (8)C1'—C2'—C7'110.85 (8)
C3—C2—C7111.27 (8)C3'—C2'—C7'111.82 (8)
C1—C2—C7110.87 (8)O3'—C3'—C4'111.68 (8)
O3—C3—C4111.05 (8)O3'—C3'—C2'111.06 (8)
O3—C3—C2107.39 (8)C4'—C3'—C2'110.85 (7)
C4—C3—C2112.03 (8)O3'—C3'—H3'107.7
O3—C3—H3108.8C4'—C3'—H3'107.7
C4—C3—H3108.8C2'—C3'—H3'107.7
C2—C3—H3108.8O4'—C4'—C5'109.79 (8)
O4—C4—C5107.50 (8)O4'—C4'—C3'108.87 (8)
O4—C4—C3109.47 (8)C5'—C4'—C3'110.32 (7)
C5—C4—C3111.39 (8)O4'—C4'—H4'109.3
O4—C4—H4109.5C5'—C4'—H4'109.3
C5—C4—H4109.5C3'—C4'—H4'109.3
C3—C4—H4109.5O5'—C5'—C6'108.79 (8)
O5—C5—C4106.49 (8)O5'—C5'—C4'108.92 (8)
O5—C5—C6110.13 (8)C6'—C5'—C4'110.32 (8)
C4—C5—C6111.71 (8)O5'—C5'—H5'109.6
O5—C5—H5109.5C6'—C5'—H5'109.6
C4—C5—H5109.5C4'—C5'—H5'109.6
C6—C5—H5109.5O6'—C6'—C5'110.57 (8)
O6—C6—C5109.88 (8)O6'—C6'—C1'105.48 (7)
O6—C6—C1110.16 (7)C5'—C6'—C1'112.77 (8)
C5—C6—C1112.02 (8)O6'—C6'—H6'109.3
O6—C6—H6108.2C5'—C6'—H6'109.3
C5—C6—H6108.2C1'—C6'—H6'109.3
C1—C6—H6108.2C8'—C7'—C2'115.90 (8)
C8—C7—C2115.18 (8)C8'—C7'—H7'A108.3
C8—C7—H7A108.5C2'—C7'—H7'A108.3
C2—C7—H7A108.5C8'—C7'—H7'B108.3
C8—C7—H7B108.5C2'—C7'—H7'B108.3
C2—C7—H7B108.5H7'A—C7'—H7'B107.4
H7A—C7—H7B107.5C13'—C8'—C9'118.36 (11)
C9—C8—C13118.31 (11)C13'—C8'—C7'120.85 (10)
C9—C8—C7120.31 (10)C9'—C8'—C7'120.79 (10)
C13—C8—C7121.38 (10)C10'—C9'—C8'120.78 (12)
C10—C9—C8120.70 (13)C10'—C9'—H9'119.6
C10—C9—H9119.7C8'—C9'—H9'119.6
C8—C9—H9119.7C11'—C10'—C9'120.16 (13)
C11—C10—C9120.40 (14)C11'—C10'—H10'119.9
C11—C10—H10119.8C9'—C10'—H10'119.9
C9—C10—H10119.8C12'—C11'—C10'119.53 (13)
C12—C11—C10119.47 (13)C12'—C11'—H11'120.2
C12—C11—H11120.3C10'—C11'—H11'120.2
C10—C11—H11120.3C11'—C12'—C13'120.35 (13)
C11—C12—C13120.26 (14)C11'—C12'—H12'119.8
C11—C12—H12119.9C13'—C12'—H12'119.8
C13—C12—H12119.9C12'—C13'—C8'120.83 (13)
C12—C13—C8120.86 (13)C12'—C13'—H13'119.6
C12—C13—H13119.6C8'—C13'—H13'119.6
C8—C13—H13119.6H1WA—O1W—H1WB109.3 (18)
C1'—O1'—H1'O109.5H2WA—O2W—H2WB108.5 (18)
O1—C1—C2—O259.12 (9)O1'—C1'—C2'—O2'56.69 (10)
C6—C1—C2—O2−64.64 (10)C6'—C1'—C2'—O2'−64.78 (10)
O1—C1—C2—C3178.79 (8)O1'—C1'—C2'—C3'173.24 (7)
C6—C1—C2—C355.03 (10)C6'—C1'—C2'—C3'51.76 (10)
O1—C1—C2—C7−58.46 (10)O1'—C1'—C2'—C7'−63.16 (10)
C6—C1—C2—C7177.78 (8)C6'—C1'—C2'—C7'175.36 (8)
O2—C2—C3—O3−62.82 (10)O2'—C2'—C3'—O3'−62.52 (10)
C1—C2—C3—O3−178.74 (8)C1'—C2'—C3'—O3'178.63 (7)
C7—C2—C3—O358.74 (10)C7'—C2'—C3'—O3'55.61 (10)
O2—C2—C3—C459.37 (10)O2'—C2'—C3'—C4'62.25 (9)
C1—C2—C3—C4−56.55 (10)C1'—C2'—C3'—C4'−56.59 (10)
C7—C2—C3—C4−179.06 (8)C7'—C2'—C3'—C4'−179.61 (8)
O3—C3—C4—O4−64.21 (10)O3'—C3'—C4'—O4'−54.04 (10)
C2—C3—C4—O4175.71 (7)C2'—C3'—C4'—O4'−178.46 (7)
O3—C3—C4—C5177.05 (8)O3'—C3'—C4'—C5'−174.57 (7)
C2—C3—C4—C556.96 (10)C2'—C3'—C4'—C5'61.00 (10)
O4—C4—C5—O565.91 (10)O4'—C4'—C5'—O5'62.81 (10)
C3—C4—C5—O5−174.17 (8)C3'—C4'—C5'—O5'−177.20 (7)
O4—C4—C5—C6−173.82 (8)O4'—C4'—C5'—C6'−177.84 (8)
C3—C4—C5—C6−53.90 (11)C3'—C4'—C5'—C6'−57.86 (10)
O5—C5—C6—O6−66.62 (10)O5'—C5'—C6'—O6'−70.13 (10)
C4—C5—C6—O6175.27 (8)C4'—C5'—C6'—O6'170.45 (8)
O5—C5—C6—C1170.59 (8)O5'—C5'—C6'—C1'172.04 (8)
C4—C5—C6—C152.47 (11)C4'—C5'—C6'—C1'52.62 (10)
O1—C1—C6—O659.58 (10)O1'—C1'—C6'—O6'67.44 (9)
C2—C1—C6—O6−176.54 (7)C2'—C1'—C6'—O6'−171.68 (8)
O1—C1—C6—C5−177.79 (7)O1'—C1'—C6'—C5'−171.78 (7)
C2—C1—C6—C5−53.91 (10)C2'—C1'—C6'—C5'−50.90 (11)
O2—C2—C7—C8−175.19 (8)O2'—C2'—C7'—C8'−177.69 (8)
C3—C2—C7—C861.74 (11)C1'—C2'—C7'—C8'−56.77 (11)
C1—C2—C7—C8−59.64 (11)C3'—C2'—C7'—C8'65.30 (11)
C2—C7—C8—C991.19 (12)C2'—C7'—C8'—C13'−92.33 (12)
C2—C7—C8—C13−88.68 (12)C2'—C7'—C8'—C9'88.33 (12)
C13—C8—C9—C10−0.38 (17)C13'—C8'—C9'—C10'0.40 (17)
C7—C8—C9—C10179.75 (11)C7'—C8'—C9'—C10'179.76 (11)
C8—C9—C10—C110.7 (2)C8'—C9'—C10'—C11'0.1 (2)
C9—C10—C11—C12−0.4 (2)C9'—C10'—C11'—C12'−0.5 (2)
C10—C11—C12—C13−0.2 (2)C10'—C11'—C12'—C13'0.3 (2)
C11—C12—C13—C80.5 (2)C11'—C12'—C13'—C8'0.2 (2)
C9—C8—C13—C12−0.21 (17)C9'—C8'—C13'—C12'−0.58 (18)
C7—C8—C13—C12179.66 (11)C7'—C8'—C13'—C12'−179.94 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1'—H1'O···O1Wi0.841.872.7052 (11)175
O1—H1O···O6'i0.841.942.7768 (10)171
O2'—H2'O···O2Wii0.841.902.7267 (12)166
O2—H2O···O3'iii0.842.042.7755 (10)145
O3'—H3'O···O4iv0.842.012.8420 (10)174
O3—H3O···O2'iv0.842.092.9290 (11)172
O4'—H4'O···O6v0.841.912.7389 (10)168
O4—H4O···O5'0.841.872.6858 (10)165
O5'—H5'O···O4'iii0.841.862.6943 (11)175
O5—H5O···O4ii0.842.573.3617 (11)157
O6'—H6'O···O50.842.132.8523 (11)144
O6—H6O···O1'ii0.842.052.8831 (10)173
O1W—H1WB···O20.85 (2)1.96 (2)2.8108 (12)174.2 (19)
O2W—H2WA···O10.85 (2)1.91 (2)2.7521 (11)173.3 (18)
O1W—H1WA···Cg1vi0.82 (2)2.59 (2)3.2647 (11)140.9 (19)
O2W—H2WB···Cg2i0.83 (2)2.59 (2)3.3335 (11)149.9 (19)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z+2; (iv) −x, −y+1, −z+2; (v) x, y, z+1; (vi) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2193).

References

  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gibson, D., Fröehlich, R. F. G., Caradoc-Davies, T. T., Loomes, K. & Painter, G. F. (2009). Unpublished work.
  • Khan, U., Qureshi, R. A., Saeed, S. & Bond, A. D. (2007). Acta Cryst. E63, o530–o532.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Simperler, A., Watt, S. W., Bonnet, P. A., Jones, W. & Motherwell, W. D. S. (2006). CrystEngComm, 8, 589–600.
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography