PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2781.
Published online 2009 October 17. doi:  10.1107/S1600536809041889
PMCID: PMC2971443

(E)-N-[(1,3-Dihydro­naphtho[2,3-c]furan-4-yl)phenyl­methyl­ene]aniline

Abstract

The title compound, C25H19NO was synthesized by a Pd-catalysed intra­molecular Diels–Alders reaction. The dihedral angle between the two benzene rings is 82.33 (5)° and the dihedral angles between the hydro­naphtho[2,3-c]furan plane and the two benzene rings are 89.50 (3) and 77.64 (2)°. The O atom is displaced by 0.5929 (3) Å from the hydro­naphtho[2,3-c]furan plane.

Related literature

For Pd-catalysed [2 + 2 + 2] cocyclization of diynes and arynes, see: Sato et al. (2004 [triangle], 2007 [triangle]). For the biological activity of hydro­naphtho[2,3-c]furan derivatives, see: Baldwin et al. (1995 [triangle]); Takadoi et al. (1999 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2781-scheme1.jpg

Experimental

Crystal data

  • C25H19NO
  • M r = 349.41
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2781-efi1.jpg
  • a = 9.326 (2) Å
  • b = 10.198 (2) Å
  • c = 10.878 (2) Å
  • α = 64.410 (10)°
  • β = 79.037 (11)°
  • γ = 86.299 (12)°
  • V = 915.9 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.27 × 0.25 × 0.19 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.979, T max = 0.985
  • 4805 measured reflections
  • 3227 independent reflections
  • 1706 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.105
  • wR(F 2) = 0.278
  • S = 1.04
  • 3227 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809041889/hg2580sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041889/hg2580Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Hydronaphtho [2,3-c]-furan derivatives exhibit potent and selective antagonism against muscarine M~2~ receptor and are expected for the use as a therapeutic drug of Arzheimer's disease for example himbacine (Baldwin et al.,1995; Takadoi et al., 1999). These compounds were syhthesized by Pd Catalyzed [2 + 2+2] cocyclization of diynes and arynes(Sato et al., 2004, 2007). We report here the synthesis and crystal structure of the title compound. In the structure of title compound(Fig1), the values of the geometric parameters in (I) are normal (Allen et al., 1987) (Table 1). The intramolecular dihedral angle between the two benzene rings is 82.33 (5)°. The dihedral angles between the hydronaphtho[2,3-c]furan plane and the two benzene planes are 89.50 (3)° and 77.64 (2)°. The distance of O1 to the hydronaphtho[2,3-c]furan plane is 0.5929 (3) Å

Experimental

To a solution of Pd(dba)3.CHCl3 (20.8 mg, 0.02 mmol) in 2.0 ml anhydrous DMF under argon was added 1a (139.6 mg, 0.4 mmol), triethylamine (60.6 mg, 0.6 mmol). The mixture was stirred at 120 for 8 h. The reaction was quenched with a saturated aqueous solution of ammonium chloride, and the mixture was extracted with Et2O.The combined organic extracts were washed with water and saturated brine. The organic layer was dried (Na2SO4) and concentrated in vacuo. The residue was purified by chromatography on silica gel. The resulting solution was vapor at room temperature for 6 d, after which block-shaped crystals of the title compound suitable for X-ray diffraction analysis were obtained, yield 80%.

Refinement

The H atoms were fixed geometrically and were treated as riding on their parent C atoms, with C—H distances in the range of 0.93–0.97 Å (methanol hydroxyl) and with Uĩso~(H) = 1.2U~eq~(parent atom),.

Figures

Fig. 1.
The independent molecules of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C25H19NOZ = 2
Mr = 349.41F(000) = 368
Triclinic, P1Dx = 1.267 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.326 (2) ÅCell parameters from 831 reflections
b = 10.198 (2) Åθ = 2.7–28.6°
c = 10.878 (2) ŵ = 0.08 mm1
α = 64.41 (1)°T = 293 K
β = 79.037 (11)°Block, yellow
γ = 86.299 (12)°0.27 × 0.25 × 0.19 mm
V = 915.9 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer3227 independent reflections
Radiation source: fine-focus sealed tube1706 reflections with I > 2σ(I)
graphiteRint = 0.046
phi and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −10→11
Tmin = 0.979, Tmax = 0.985k = −12→11
4805 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.105Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.278H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.150P)2] where P = (Fo2 + 2Fc2)/3
3227 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = −0.48 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C110.1356 (4)0.2470 (4)0.7731 (4)0.0433 (9)
C120.1319 (4)0.1578 (4)0.7038 (4)0.0435 (9)
C60.1621 (4)0.1824 (4)0.9125 (4)0.0446 (9)
C50.1846 (4)0.0328 (4)0.9765 (4)0.0486 (10)
H50.1995−0.01011.06770.058*
C40.1851 (4)−0.0506 (4)0.9077 (4)0.0471 (9)
N1−0.0090 (4)0.2261 (4)0.5151 (3)0.0583 (10)
C10.1585 (4)0.0116 (4)0.7703 (4)0.0464 (10)
C100.1162 (4)0.3989 (4)0.7104 (4)0.0529 (10)
H100.09780.44270.62040.064*
C130.1141 (4)0.2222 (4)0.5537 (4)0.0473 (10)
C70.1645 (4)0.2734 (4)0.9793 (4)0.0553 (11)
H70.17880.23201.07070.066*
C140.2449 (4)0.2815 (4)0.4463 (4)0.0495 (10)
C90.1235 (4)0.4827 (4)0.7779 (4)0.0585 (11)
H90.11310.58280.73280.070*
C20−0.1432 (4)0.1792 (5)0.6102 (4)0.0527 (11)
C80.1467 (5)0.4190 (5)0.9153 (5)0.0605 (11)
H80.14990.47620.96210.073*
C190.2363 (5)0.3438 (5)0.3073 (4)0.0600 (11)
H190.14620.34760.28130.072*
C180.3576 (5)0.3999 (5)0.2072 (5)0.0708 (13)
H180.34900.44250.11420.085*
C21−0.2194 (5)0.2719 (5)0.6612 (4)0.0632 (12)
H21−0.17730.36000.64340.076*
C20.1712 (5)−0.1041 (4)0.7202 (4)0.0645 (12)
H2A0.0832−0.11040.68750.077*
H2B0.2538−0.08400.64500.077*
C25−0.2089 (5)0.0486 (5)0.6375 (4)0.0626 (12)
H25−0.1595−0.01330.60210.075*
O10.1914 (4)−0.2359 (3)0.8365 (3)0.0819 (11)
C22−0.3594 (5)0.2322 (5)0.7394 (5)0.0699 (13)
H22−0.41120.29440.77320.084*
C30.2152 (5)−0.2078 (4)0.9480 (4)0.0608 (11)
H3A0.3153−0.22860.96250.073*
H3B0.1500−0.26761.03280.073*
C24−0.3477 (5)0.0100 (6)0.7172 (5)0.0705 (13)
H24−0.3902−0.07840.73670.085*
C23−0.4213 (5)0.1018 (6)0.7669 (5)0.0718 (14)
H23−0.51450.07580.81990.086*
C150.3807 (5)0.2772 (5)0.4806 (5)0.0739 (14)
H150.38960.23650.57340.089*
C160.5024 (5)0.3318 (6)0.3804 (5)0.0892 (17)
H160.59280.32630.40640.107*
C170.4933 (5)0.3938 (5)0.2436 (5)0.0753 (14)
H170.57630.43130.17600.090*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C110.041 (2)0.038 (2)0.050 (2)0.0026 (15)−0.0135 (17)−0.0164 (17)
C120.041 (2)0.043 (2)0.046 (2)0.0045 (16)−0.0145 (16)−0.0168 (17)
C60.040 (2)0.046 (2)0.050 (2)0.0062 (16)−0.0150 (17)−0.0201 (17)
C50.048 (2)0.050 (2)0.048 (2)0.0031 (17)−0.0200 (17)−0.0163 (18)
C40.044 (2)0.041 (2)0.054 (2)0.0055 (16)−0.0168 (17)−0.0169 (17)
N10.052 (2)0.069 (2)0.0467 (19)0.0011 (17)−0.0183 (16)−0.0149 (16)
C10.046 (2)0.042 (2)0.051 (2)0.0049 (17)−0.0155 (18)−0.0181 (17)
C100.054 (3)0.048 (2)0.054 (2)0.0031 (18)−0.0186 (19)−0.0156 (19)
C130.054 (2)0.040 (2)0.049 (2)0.0058 (17)−0.0199 (19)−0.0169 (17)
C70.058 (3)0.056 (3)0.059 (2)0.008 (2)−0.024 (2)−0.027 (2)
C140.055 (3)0.044 (2)0.050 (2)0.0060 (18)−0.0173 (19)−0.0176 (17)
C90.057 (3)0.044 (2)0.077 (3)0.0072 (19)−0.026 (2)−0.024 (2)
C200.052 (3)0.058 (3)0.043 (2)0.007 (2)−0.0249 (19)−0.0111 (18)
C80.062 (3)0.053 (3)0.077 (3)0.001 (2)−0.022 (2)−0.034 (2)
C190.058 (3)0.068 (3)0.048 (2)0.002 (2)−0.018 (2)−0.016 (2)
C180.066 (3)0.080 (3)0.054 (3)−0.005 (2)−0.012 (2)−0.016 (2)
C210.062 (3)0.062 (3)0.063 (3)0.007 (2)−0.023 (2)−0.019 (2)
C20.079 (3)0.052 (3)0.067 (3)0.012 (2)−0.028 (2)−0.025 (2)
C250.065 (3)0.063 (3)0.057 (3)0.007 (2)−0.028 (2)−0.017 (2)
O10.120 (3)0.0447 (17)0.085 (2)0.0196 (17)−0.0338 (19)−0.0285 (16)
C220.065 (3)0.076 (3)0.064 (3)0.019 (3)−0.021 (2)−0.024 (2)
C30.071 (3)0.049 (2)0.061 (3)0.010 (2)−0.023 (2)−0.019 (2)
C240.065 (3)0.076 (3)0.067 (3)−0.005 (3)−0.025 (2)−0.021 (2)
C230.055 (3)0.089 (4)0.062 (3)0.001 (3)−0.023 (2)−0.019 (3)
C150.057 (3)0.098 (4)0.055 (3)0.000 (2)−0.021 (2)−0.017 (2)
C160.049 (3)0.129 (5)0.071 (3)−0.002 (3)−0.015 (2)−0.024 (3)
C170.061 (3)0.084 (3)0.066 (3)−0.006 (2)−0.002 (2)−0.021 (3)

Geometric parameters (Å, °)

C11—C101.413 (5)C8—H80.9300
C11—C121.416 (5)C19—C181.367 (6)
C11—C61.432 (5)C19—H190.9300
C12—C11.377 (5)C18—C171.387 (6)
C12—C131.513 (5)C18—H180.9300
C6—C51.398 (5)C21—C221.393 (6)
C6—C71.407 (5)C21—H210.9300
C5—C41.353 (5)C2—O11.426 (5)
C5—H50.9300C2—H2A0.9700
C4—C11.414 (5)C2—H2B0.9700
C4—C31.491 (5)C25—C241.388 (6)
N1—C131.288 (5)C25—H250.9300
N1—C201.422 (5)O1—C31.419 (5)
C1—C21.489 (5)C22—C231.372 (7)
C10—C91.357 (5)C22—H220.9300
C10—H100.9300C3—H3A0.9700
C13—C141.470 (5)C3—H3B0.9700
C7—C81.355 (6)C24—C231.361 (6)
C7—H70.9300C24—H240.9300
C14—C151.379 (5)C23—H230.9300
C14—C191.381 (5)C15—C161.368 (6)
C9—C81.404 (6)C15—H150.9300
C9—H90.9300C16—C171.360 (6)
C20—C211.387 (6)C16—H160.9300
C20—C251.390 (6)C17—H170.9300
C10—C11—C12123.0 (3)C14—C19—H19119.3
C10—C11—C6117.8 (3)C19—C18—C17120.3 (4)
C12—C11—C6119.3 (3)C19—C18—H18119.8
C1—C12—C11119.3 (3)C17—C18—H18119.8
C1—C12—C13119.3 (3)C20—C21—C22119.5 (4)
C11—C12—C13121.2 (3)C20—C21—H21120.2
C5—C6—C7122.7 (4)C22—C21—H21120.2
C5—C6—C11119.2 (3)O1—C2—C1105.7 (3)
C7—C6—C11118.2 (3)O1—C2—H2A110.6
C4—C5—C6120.9 (4)C1—C2—H2A110.6
C4—C5—H5119.5O1—C2—H2B110.6
C6—C5—H5119.5C1—C2—H2B110.6
C5—C4—C1120.5 (3)H2A—C2—H2B108.7
C5—C4—C3131.5 (4)C24—C25—C20120.5 (4)
C1—C4—C3108.0 (3)C24—C25—H25119.8
C13—N1—C20122.9 (3)C20—C25—H25119.8
C12—C1—C4120.8 (3)C3—O1—C2111.0 (3)
C12—C1—C2130.7 (3)C23—C22—C21120.4 (5)
C4—C1—C2108.4 (3)C23—C22—H22119.8
C9—C10—C11121.9 (4)C21—C22—H22119.8
C9—C10—H10119.1O1—C3—C4106.0 (3)
C11—C10—H10119.1O1—C3—H3A110.5
N1—C13—C14118.4 (3)C4—C3—H3A110.5
N1—C13—C12123.5 (3)O1—C3—H3B110.5
C14—C13—C12118.1 (3)C4—C3—H3B110.5
C8—C7—C6122.4 (4)H3A—C3—H3B108.7
C8—C7—H7118.8C23—C24—C25119.9 (5)
C6—C7—H7118.8C23—C24—H24120.1
C15—C14—C19117.5 (4)C25—C24—H24120.1
C15—C14—C13121.3 (4)C24—C23—C22120.6 (5)
C19—C14—C13121.2 (4)C24—C23—H23119.7
C10—C9—C8120.3 (4)C22—C23—H23119.7
C10—C9—H9119.8C16—C15—C14121.2 (4)
C8—C9—H9119.8C16—C15—H15119.4
C21—C20—C25119.1 (4)C14—C15—H15119.4
C21—C20—N1120.2 (4)C17—C16—C15121.1 (5)
C25—C20—N1120.0 (4)C17—C16—H16119.4
C7—C8—C9119.4 (4)C15—C16—H16119.4
C7—C8—H8120.3C16—C17—C18118.5 (4)
C9—C8—H8120.3C16—C17—H17120.7
C18—C19—C14121.3 (4)C18—C17—H17120.7
C18—C19—H19119.3
C10—C11—C12—C1177.0 (3)C12—C13—C14—C150.8 (5)
C6—C11—C12—C1−2.0 (5)N1—C13—C14—C191.9 (6)
C10—C11—C12—C133.1 (5)C12—C13—C14—C19−179.1 (3)
C6—C11—C12—C13−176.0 (3)C11—C10—C9—C8−1.9 (6)
C10—C11—C6—C5−178.7 (3)C13—N1—C20—C2182.6 (5)
C12—C11—C6—C50.4 (5)C13—N1—C20—C25−106.4 (5)
C10—C11—C6—C71.2 (5)C6—C7—C8—C90.6 (6)
C12—C11—C6—C7−179.7 (3)C10—C9—C8—C71.2 (6)
C7—C6—C5—C4−178.3 (3)C15—C14—C19—C18−0.4 (6)
C11—C6—C5—C41.5 (5)C13—C14—C19—C18179.5 (4)
C6—C5—C4—C1−1.8 (6)C14—C19—C18—C170.8 (7)
C6—C5—C4—C3175.7 (4)C25—C20—C21—C220.4 (6)
C11—C12—C1—C41.8 (5)N1—C20—C21—C22171.5 (4)
C13—C12—C1—C4175.9 (3)C12—C1—C2—O1−176.9 (4)
C11—C12—C1—C2−175.5 (4)C4—C1—C2—O15.5 (4)
C13—C12—C1—C2−1.4 (6)C21—C20—C25—C24−1.3 (6)
C5—C4—C1—C120.1 (6)N1—C20—C25—C24−172.4 (4)
C3—C4—C1—C12−177.9 (3)C1—C2—O1—C3−9.2 (5)
C5—C4—C1—C2178.0 (3)C20—C21—C22—C230.5 (6)
C3—C4—C1—C2−0.1 (4)C2—O1—C3—C49.2 (5)
C12—C11—C10—C9−178.4 (3)C5—C4—C3—O1176.8 (4)
C6—C11—C10—C90.7 (6)C1—C4—C3—O1−5.5 (4)
C20—N1—C13—C14−176.4 (3)C20—C25—C24—C231.3 (6)
C20—N1—C13—C124.6 (6)C25—C24—C23—C22−0.3 (7)
C1—C12—C13—N187.9 (5)C21—C22—C23—C24−0.6 (7)
C11—C12—C13—N1−98.2 (4)C19—C14—C15—C16−0.4 (7)
C1—C12—C13—C14−91.2 (4)C13—C14—C15—C16179.7 (4)
C11—C12—C13—C1482.8 (4)C14—C15—C16—C170.9 (8)
C5—C6—C7—C8178.0 (4)C15—C16—C17—C18−0.4 (8)
C11—C6—C7—C8−1.8 (6)C19—C18—C17—C16−0.4 (7)
N1—C13—C14—C15−178.3 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2580).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1–19.
  • Baldwin, J. E., Chesworth, R. A., Parker, J. S. & Russell, A. T. (1995). Tetrahedron Lett.36, 9551–9554.
  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sato, Y., Tamura, T., Kinbara, A. & Mori, M. (2007). Adv. Synth. Catal.349, 647–661.
  • Sato, Y., Tamura, T. & Mori, M. (2004). Angew. Chem. Int. Ed 43, 2436–2440. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Takadoi, M., Katoh, T., Ishiwata, A. & Terashima, S. (1999). Tetrahedron Lett.40, 3399–3402.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography