PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2943–o2944.
Published online 2009 October 31. doi:  10.1107/S1600536809044730
PMCID: PMC2971430

4,4-Dimethyl-2-tosyl-1,2,3,3a,4,11b-hexa­hydro-11H-pyrrolo[3,4-c]pyrano[5,6-c]chromen-11-one 0.125-hydrate

Abstract

In the title compound, C23H23NO5S·0.125H2O, the pyrrolidine ring has a twist conformation and the dihydro­pyran ring adopts a half-chair conformation; the two rings are cis-fused. The mol­ecule adopts a folded conformation. The sulfonyl-bound phenyl ring and the pyran ring of the coumarin ring system are stacked over one another, with a centroid–centroid distance of 3.7470 (7) Å; the dihedral angle between the two rings is 18.93 (2)°. An intra­molecular C—H(...)O hydrogen bond is observed. The solvent water mol­ecule, lying on a twofold rotation axis, is only partially occupied with an occupancy of 0.125 (relative occupancy with respect to the main molecule) and is involved in O—H(...)O and C—H(...)O hydrogen bonding.

Related literature

For the biological activity of pyran­ocoumarin compounds, see: Kawaii et al. (2001 [triangle]); Hossain et al. (1996 [triangle]); Goel et al. (1997 [triangle]); Su et al. (2009 [triangle]); Xu et al. (2006 [triangle]). For asymmetry parameters, see: Duax et al. (1976 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2943-scheme1.jpg

Experimental

Crystal data

  • C23H23NO5S·0.125H2O
  • M r = 427.74
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-65-o2943-efi3.jpg
  • a = 15.1932 (2) Å
  • c = 17.7180 (3) Å
  • V = 4089.91 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 100 K
  • 0.50 × 0.44 × 0.13 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.845, T max = 0.976
  • 97892 measured reflections
  • 6004 independent reflections
  • 5114 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.109
  • S = 1.05
  • 6004 reflections
  • 282 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809044730/bt5116sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044730/bt5116Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Pyranocoumarins show strong activity against cancer cell lines (Kawaii et al., 2001) and exhibit monoamine oxidase inhibitory activity (Hossain et al., 1996). Antiulcer activity of some naturally occurring pyrano-coumarin has been reported (Goel et al., 1997). They also show anti-hepatitis B virus and cytotoxic activities (Su et al., 2009) and anti-TB activity (Xu et al., 2006). We report here the crystal structure of the title pyranocoumarin derivative.

In the title molecule (Fig.1), the coumarin ring system is planar with an r.m.s. deviation of 0.036 Å. The pyrrolidine ring has a twist conformation, with asymmetry parameter (Duax et al., 1976) ΔC2[N1] = ΔC2[C2—C3] = 1.7 (1)°. The tosyl group is equatorially attached to the pyrrolidine ring. The dihydropyran ring adopts a half-chair conformation, with the asymmetry parameter ΔC2[C2—C5] = 7.4 (1)°. The pyrrolidine ring is cis-fused to the dihydropyran ring. The sulfonyl group has a distorted tetrahedral geometry [O1—S1—O2 = 119.79 (6)°]. The molecule adopts a folded conformation, with the sulfonyl-bound phenyl ring and the pyran ring of the coumarin ring system being stacked over one another. The dihedral angle between the above two rings is 18.93 (2)° and their centroid-to-centroid separation is 3.7470 (7) Å. An intramolecular C4—H4A···O5 hydrogen bond is observed.

In the crystal structure, the water molecule with a fractional occupancy of 0.125 is involved in O—H···O and C—H···O hydrogen bonding with the coumarin derivative leading to the formation of a three-dimensional network (Fig.2).

Experimental

To a solution of 4-hydroxycoumarin (1 mmol) in toluene (20 ml), the corresponding 2-(N-prenyl-N-tosylamino)acetaldehyde (1 mmol) and a catalytic amount of the base ethylenediamine-N,N'-diacetate (EDDA, 1 mmol) were added and the reaction mixture was refluxed for 12 h. After completion of the reaction, the solvent was evaporated under reduced pressure and the crude product was chromatographed using a hexane-ethyl acetate (8:2 v/v) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

Refinement

The water H atom was located in a difference map and its positional parameters were refined with a O—H distance restraint of 0.84 (2) Å. The water molecule has a fractional occupancy of 1/8, which was initially refined and later fixed. The Uiso values were set equal to 1.5Ueq of the carrier atom for methyl and water H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The water molecule has a fractional occupancy of 0.125. One of the water H atoms is generated by the symmetry operation (3/2 - x, 3/2 - y, z). ...
Fig. 2.
Crystal packing of the title compound, viewed along the c axis. The water molecule has a fractional occupancy of 0.125. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the interactions have been omitted.

Crystal data

C23H23NO5S·0.125H2ODx = 1.389 Mg m3
Mr = 427.74Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/nCell parameters from 9971 reflections
Hall symbol: -P 4bcθ = 2.2–29.7°
a = 15.1932 (2) ŵ = 0.20 mm1
c = 17.7180 (3) ÅT = 100 K
V = 4089.91 (10) Å3Block, colourless
Z = 80.50 × 0.44 × 0.13 mm
F(000) = 1802

Data collection

Bruker SMART APEXII CCD area-detector diffractometer6004 independent reflections
Radiation source: fine-focus sealed tube5114 reflections with I > 2σ(I)
graphiteRint = 0.058
[var phi] and ω scansθmax = 30.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −19→21
Tmin = 0.845, Tmax = 0.976k = −19→21
97892 measured reflectionsl = −24→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0592P)2 + 1.3394P] where P = (Fo2 + 2Fc2)/3
6004 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.44 e Å3
1 restraintΔρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.581635 (19)0.56278 (2)0.395952 (15)0.02140 (8)
O10.62409 (6)0.47960 (7)0.40829 (5)0.0292 (2)
O20.61326 (6)0.63995 (7)0.43408 (5)0.0313 (2)
O30.30418 (6)0.47680 (5)0.26574 (4)0.01818 (16)
O40.35320 (6)0.73448 (6)0.20657 (5)0.02448 (19)
O50.35668 (6)0.77642 (6)0.32563 (5)0.02305 (18)
N10.47990 (6)0.55091 (7)0.42058 (5)0.01870 (19)
C10.43048 (8)0.47357 (8)0.39346 (6)0.0190 (2)
H1A0.44160.42260.42500.023*
H1B0.44600.45950.34180.023*
C20.33383 (7)0.50282 (7)0.39921 (6)0.0168 (2)
H20.31250.49050.45030.020*
C30.33722 (7)0.60314 (7)0.38784 (6)0.0165 (2)
H30.28650.63120.41200.020*
C40.42234 (8)0.62880 (8)0.42864 (6)0.0191 (2)
H4A0.44890.68010.40540.023*
H4B0.41110.64140.48140.023*
C50.27372 (8)0.45698 (7)0.34279 (6)0.0180 (2)
C60.32304 (7)0.56163 (7)0.25100 (6)0.0161 (2)
C70.33841 (7)0.62372 (7)0.30463 (6)0.0163 (2)
C80.58331 (7)0.58347 (8)0.29825 (6)0.0191 (2)
C90.56995 (11)0.66848 (9)0.27189 (7)0.0313 (3)
H90.56340.71500.30560.038*
C100.56654 (12)0.68315 (9)0.19508 (8)0.0387 (4)
H100.55640.73990.17750.046*
C110.57777 (10)0.61547 (9)0.14336 (7)0.0284 (3)
C120.59130 (8)0.53099 (8)0.17059 (7)0.0211 (2)
H120.59890.48480.13670.025*
C130.59373 (8)0.51415 (8)0.24766 (6)0.0195 (2)
H130.60220.45710.26530.023*
C140.57659 (14)0.63433 (12)0.05996 (8)0.0496 (5)
H14A0.55110.58530.03370.074*
H14B0.63570.64350.04250.074*
H14C0.54220.68620.05050.074*
C150.17906 (8)0.48882 (8)0.34908 (7)0.0229 (2)
H15A0.14320.45820.31300.034*
H15B0.17680.55090.33910.034*
H15C0.15750.47750.39910.034*
C160.27884 (9)0.35747 (8)0.34841 (7)0.0244 (2)
H16A0.24000.33150.31190.037*
H16B0.26170.33930.39820.037*
H16C0.33810.33860.33870.037*
C170.32585 (7)0.58344 (8)0.17165 (6)0.0180 (2)
C180.31166 (8)0.52190 (8)0.11395 (6)0.0211 (2)
H180.30070.46330.12580.025*
C190.31403 (9)0.54850 (9)0.03950 (7)0.0252 (3)
H190.30410.50780.00130.030*
C200.33121 (10)0.63606 (10)0.02134 (7)0.0307 (3)
H200.33270.6532−0.02900.037*
C210.34609 (10)0.69774 (9)0.07730 (7)0.0307 (3)
H210.35840.75600.06510.037*
C220.34229 (8)0.67083 (8)0.15238 (6)0.0223 (2)
C230.35020 (8)0.71478 (8)0.28241 (6)0.0190 (2)
O1W0.75000.75000.4887 (3)0.0379 (14)0.25
H1W10.714 (5)0.723 (5)0.463 (4)0.057*0.25

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01678 (14)0.03109 (17)0.01633 (13)0.00006 (10)−0.00130 (9)0.00123 (10)
O10.0219 (4)0.0431 (6)0.0225 (4)0.0104 (4)−0.0003 (3)0.0089 (4)
O20.0238 (5)0.0462 (6)0.0241 (4)−0.0101 (4)−0.0015 (3)−0.0076 (4)
O30.0253 (4)0.0136 (4)0.0156 (3)−0.0018 (3)0.0003 (3)0.0007 (3)
O40.0349 (5)0.0179 (4)0.0207 (4)−0.0063 (3)−0.0050 (3)0.0041 (3)
O50.0261 (4)0.0163 (4)0.0267 (4)−0.0019 (3)−0.0023 (3)−0.0015 (3)
N10.0163 (4)0.0216 (5)0.0182 (4)0.0010 (4)−0.0001 (3)0.0003 (3)
C10.0199 (5)0.0190 (5)0.0181 (5)0.0011 (4)−0.0008 (4)0.0009 (4)
C20.0188 (5)0.0164 (5)0.0152 (4)0.0000 (4)0.0006 (4)0.0013 (4)
C30.0178 (5)0.0157 (5)0.0161 (4)0.0005 (4)0.0008 (4)−0.0007 (4)
C40.0208 (5)0.0195 (5)0.0169 (5)0.0003 (4)−0.0013 (4)−0.0022 (4)
C50.0214 (5)0.0162 (5)0.0164 (5)−0.0020 (4)0.0005 (4)0.0027 (4)
C60.0161 (5)0.0148 (5)0.0173 (5)0.0006 (4)−0.0008 (4)0.0018 (4)
C70.0167 (5)0.0152 (5)0.0171 (5)0.0003 (4)−0.0011 (4)0.0013 (4)
C80.0175 (5)0.0223 (5)0.0175 (5)−0.0005 (4)0.0009 (4)0.0016 (4)
C90.0501 (9)0.0184 (6)0.0253 (6)0.0008 (5)0.0106 (6)−0.0021 (5)
C100.0695 (11)0.0195 (6)0.0272 (6)0.0099 (6)0.0134 (7)0.0065 (5)
C110.0404 (8)0.0249 (6)0.0200 (5)0.0089 (5)0.0051 (5)0.0053 (5)
C120.0240 (6)0.0204 (5)0.0190 (5)0.0016 (4)0.0005 (4)−0.0004 (4)
C130.0201 (5)0.0183 (5)0.0201 (5)0.0014 (4)0.0004 (4)0.0027 (4)
C140.0861 (14)0.0409 (9)0.0217 (6)0.0300 (9)0.0102 (7)0.0097 (6)
C150.0194 (5)0.0235 (6)0.0256 (6)−0.0029 (4)−0.0004 (4)0.0019 (4)
C160.0322 (7)0.0161 (5)0.0250 (6)−0.0025 (4)−0.0019 (5)0.0029 (4)
C170.0184 (5)0.0194 (5)0.0162 (5)−0.0007 (4)−0.0012 (4)0.0021 (4)
C180.0237 (6)0.0209 (5)0.0188 (5)0.0017 (4)−0.0024 (4)0.0008 (4)
C190.0290 (6)0.0290 (6)0.0177 (5)0.0018 (5)−0.0036 (4)−0.0004 (4)
C200.0389 (8)0.0351 (7)0.0180 (5)−0.0040 (6)−0.0036 (5)0.0072 (5)
C210.0424 (8)0.0273 (7)0.0225 (6)−0.0088 (5)−0.0046 (5)0.0090 (5)
C220.0266 (6)0.0207 (6)0.0195 (5)−0.0039 (4)−0.0039 (4)0.0030 (4)
C230.0188 (5)0.0173 (5)0.0208 (5)−0.0010 (4)−0.0023 (4)0.0027 (4)
O1W0.055 (4)0.037 (3)0.022 (2)−0.029 (3)0.0000.000

Geometric parameters (Å, °)

S1—O11.4355 (10)C9—C101.3799 (19)
S1—O21.4359 (10)C9—H90.93
S1—N11.6161 (10)C10—C111.3878 (19)
S1—C81.7597 (12)C10—H100.93
O3—C61.3459 (13)C11—C121.3865 (17)
O3—C51.4727 (13)C11—C141.5054 (18)
O4—C221.3728 (14)C12—C131.3897 (15)
O4—C231.3774 (14)C12—H120.93
O5—C231.2137 (14)C13—H130.93
N1—C11.4749 (15)C14—H14A0.96
N1—C41.4784 (15)C14—H14B0.96
C1—C21.5376 (16)C14—H14C0.96
C1—H1A0.97C15—H15A0.96
C1—H1B0.97C15—H15B0.96
C2—C51.5225 (15)C15—H15C0.96
C2—C31.5382 (15)C16—H16A0.96
C2—H20.98C16—H16B0.96
C3—C71.5072 (14)C16—H16C0.96
C3—C41.5320 (16)C17—C221.3935 (16)
C3—H30.98C17—C181.4021 (16)
C4—H4A0.97C18—C191.3800 (16)
C4—H4B0.97C18—H180.93
C5—C161.5172 (16)C19—C201.3934 (19)
C5—C151.5215 (17)C19—H190.93
C6—C71.3592 (15)C20—C211.383 (2)
C6—C171.4449 (14)C20—H200.93
C7—C231.4497 (15)C21—C221.3929 (16)
C8—C91.3883 (17)C21—H210.93
C8—C131.3920 (16)O1W—H1W10.83 (2)
O1—S1—O2119.79 (6)C8—C9—H9120.4
O1—S1—N1106.89 (6)C9—C10—C11121.80 (12)
O2—S1—N1106.50 (6)C9—C10—H10119.1
O1—S1—C8107.49 (6)C11—C10—H10119.1
O2—S1—C8108.18 (6)C12—C11—C10118.31 (12)
N1—S1—C8107.42 (5)C12—C11—C14121.30 (12)
C6—O3—C5116.27 (8)C10—C11—C14120.38 (12)
C22—O4—C23121.68 (9)C11—C12—C13121.08 (11)
C1—N1—C4111.59 (9)C11—C12—H12119.5
C1—N1—S1119.20 (8)C13—C12—H12119.5
C4—N1—S1120.17 (8)C12—C13—C8119.36 (11)
N1—C1—C2103.55 (9)C12—C13—H13120.3
N1—C1—H1A111.1C8—C13—H13120.3
C2—C1—H1A111.1C11—C14—H14A109.5
N1—C1—H1B111.1C11—C14—H14B109.5
C2—C1—H1B111.1H14A—C14—H14B109.5
H1A—C1—H1B109.0C11—C14—H14C109.5
C5—C2—C1113.40 (9)H14A—C14—H14C109.5
C5—C2—C3112.79 (9)H14B—C14—H14C109.5
C1—C2—C3104.22 (9)C5—C15—H15A109.5
C5—C2—H2108.7C5—C15—H15B109.5
C1—C2—H2108.7H15A—C15—H15B109.5
C3—C2—H2108.7C5—C15—H15C109.5
C7—C3—C4113.50 (9)H15A—C15—H15C109.5
C7—C3—C2109.51 (9)H15B—C15—H15C109.5
C4—C3—C2102.63 (9)C5—C16—H16A109.5
C7—C3—H3110.3C5—C16—H16B109.5
C4—C3—H3110.3H16A—C16—H16B109.5
C2—C3—H3110.3C5—C16—H16C109.5
N1—C4—C3104.48 (9)H16A—C16—H16C109.5
N1—C4—H4A110.9H16B—C16—H16C109.5
C3—C4—H4A110.9C22—C17—C18118.96 (10)
N1—C4—H4B110.9C22—C17—C6117.53 (10)
C3—C4—H4B110.9C18—C17—C6123.50 (10)
H4A—C4—H4B108.9C19—C18—C17119.85 (11)
O3—C5—C16104.38 (9)C19—C18—H18120.1
O3—C5—C15107.45 (9)C17—C18—H18120.1
C16—C5—C15111.13 (10)C18—C19—C20120.34 (12)
O3—C5—C2109.06 (9)C18—C19—H19119.8
C16—C5—C2112.46 (9)C20—C19—H19119.8
C15—C5—C2111.93 (9)C21—C20—C19120.80 (11)
O3—C6—C7124.44 (10)C21—C20—H20119.6
O3—C6—C17114.50 (9)C19—C20—H20119.6
C7—C6—C17121.06 (10)C20—C21—C22118.62 (12)
C6—C7—C23119.59 (10)C20—C21—H21120.7
C6—C7—C3122.54 (10)C22—C21—H21120.7
C23—C7—C3117.72 (9)O4—C22—C21117.14 (11)
C9—C8—C13120.26 (11)O4—C22—C17121.43 (10)
C9—C8—S1119.68 (9)C21—C22—C17121.41 (11)
C13—C8—S1119.99 (9)O5—C23—O4116.44 (10)
C10—C9—C8119.17 (12)O5—C23—C7125.11 (11)
C10—C9—H9120.4O4—C23—C7118.45 (10)
O1—S1—N1—C1−47.47 (10)O2—S1—C8—C9−31.08 (12)
O2—S1—N1—C1−176.63 (8)N1—S1—C8—C983.53 (12)
C8—S1—N1—C167.65 (10)O1—S1—C8—C1321.34 (11)
O1—S1—N1—C4168.19 (8)O2—S1—C8—C13152.02 (10)
O2—S1—N1—C439.03 (10)N1—S1—C8—C13−93.37 (10)
C8—S1—N1—C4−76.69 (9)C13—C8—C9—C100.5 (2)
C4—N1—C1—C2−10.44 (11)S1—C8—C9—C10−176.44 (12)
S1—N1—C1—C2−157.62 (7)C8—C9—C10—C11−1.3 (3)
N1—C1—C2—C5152.39 (9)C9—C10—C11—C121.1 (3)
N1—C1—C2—C329.36 (10)C9—C10—C11—C14−178.00 (17)
C5—C2—C3—C7−39.60 (12)C10—C11—C12—C13−0.1 (2)
C1—C2—C3—C783.82 (10)C14—C11—C12—C13178.96 (14)
C5—C2—C3—C4−160.46 (9)C11—C12—C13—C8−0.66 (19)
C1—C2—C3—C4−37.03 (10)C9—C8—C13—C120.48 (18)
C1—N1—C4—C3−12.70 (12)S1—C8—C13—C12177.37 (9)
S1—N1—C4—C3134.11 (8)O3—C6—C17—C22178.02 (10)
C7—C3—C4—N1−87.73 (11)C7—C6—C17—C22−1.85 (16)
C2—C3—C4—N130.35 (10)O3—C6—C17—C18−0.97 (16)
C6—O3—C5—C16−166.93 (9)C7—C6—C17—C18179.16 (11)
C6—O3—C5—C1574.98 (11)C22—C17—C18—C19−0.09 (18)
C6—O3—C5—C2−46.55 (12)C6—C17—C18—C19178.89 (11)
C1—C2—C5—O3−60.12 (12)C17—C18—C19—C200.55 (19)
C3—C2—C5—O358.06 (12)C18—C19—C20—C210.0 (2)
C1—C2—C5—C1655.17 (12)C19—C20—C21—C22−0.9 (2)
C3—C2—C5—C16173.35 (9)C23—O4—C22—C21179.72 (12)
C1—C2—C5—C15−178.89 (9)C23—O4—C22—C171.34 (18)
C3—C2—C5—C15−60.71 (12)C20—C21—C22—O4−176.96 (13)
C5—O3—C6—C718.19 (15)C20—C21—C22—C171.4 (2)
C5—O3—C6—C17−161.67 (9)C18—C17—C22—O4177.39 (11)
O3—C6—C7—C23−174.40 (10)C6—C17—C22—O4−1.65 (17)
C17—C6—C7—C235.45 (16)C18—C17—C22—C21−0.91 (19)
O3—C6—C7—C30.98 (17)C6—C17—C22—C21−179.95 (12)
C17—C6—C7—C3−179.17 (10)C22—O4—C23—O5−176.80 (11)
C4—C3—C7—C6124.43 (11)C22—O4—C23—C72.28 (16)
C2—C3—C7—C610.40 (15)C6—C7—C23—O5173.33 (11)
C4—C3—C7—C23−60.11 (13)C3—C7—C23—O5−2.27 (17)
C2—C3—C7—C23−174.13 (10)C6—C7—C23—O4−5.67 (16)
O1—S1—C8—C9−161.76 (11)C3—C7—C23—O4178.73 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4A···O50.972.473.0588 (15)119
O1W—H1W1···O20.83 (2)2.05 (8)2.837 (2)161 (8)
C16—H16B···O1Wi0.962.433.345 (5)160
C16—H16B···O1Wii0.962.433.345 (5)160
C14—H14B···O1Wiii0.962.443.282 (2)147
C14—H14B···O1Wiv0.962.443.282 (2)147

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1/2, y−1/2, −z+1; (iii) y, −x+3/2, −z+1/2; (iv) −y+3/2, x, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5116).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.
  • Goel, R. K., Maiti, R. N., Manickam, M. & Ray, A. B. (1997). Indian J. Exp. Biol.35, 1080–1083. [PubMed]
  • Hossain, C. F., Okuyama, E. & Yamazaki, M. (1996). Chem. Pharm. Bull. (Tokyo), 44, 1535–1539. [PubMed]
  • Kawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yano, M., Yoshizawa, Y., Ito, C. & Furukawa, H. (2001). Anticancer Res.21, 1905–1911. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Su, C. R., Yeh, S. F., Liu, C. M., Damu, A. G., Kuo, T. H., Chiang, P. C., Bastow, K. F., Lee, K. H. & Wu, T. S. (2009). Bioorg. Med. Chem.17, 6137–6143. [PubMed]
  • Xu, Z. Q., Pupek, K., Suling, W. J., Enache, L. & Flavin, M. T. (2006). Bioorg. Med. Chem.14, 4610–4626. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography