PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2749.
Published online 2009 October 17. doi:  10.1107/S1600536809041531
PMCID: PMC2971427

(3,5-Dinitro-1,3,5-triazinan-1-yl)methanone

Abstract

In the title compound, C5H9N5O5, prepared from hexa­mine by acetyl­ation and nitration, the triazine ring adopts a chair conformation with all three substituent groups lying on the same side of the ring.

Related literature

For the Bachmann process, see: Bachmann & Sheehan (1949 [triangle]). For the synthesis, see: Warman et al. (1973 [triangle]). For a related structure, see: Choi et al. (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2749-scheme1.jpg

Experimental

Crystal data

  • C5H9N5O5
  • M r = 219.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2749-efi1.jpg
  • a = 8.8972 (18) Å
  • b = 10.061 (2) Å
  • c = 9.890 (2) Å
  • β = 100.42 (3)°
  • V = 870.7 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.15 mm−1
  • T = 293 K
  • 0.50 × 0.50 × 0.40 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.929, T max = 0.943
  • 3599 measured reflections
  • 1988 independent reflections
  • 1419 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.142
  • S = 1.03
  • 1988 reflections
  • 138 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2000 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2000 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809041531/zs2012sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041531/zs2012Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank China North Industries Group Corporation for financial support.

supplementary crystallographic information

Comment

1-Acetyl-3,5-dinitro-1,3,5-triazinane (1-acetylhexahydro-3,5-dinitro-1,3,5-triazine) (I) is obtained as a by-product in the synthesis of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from 1,3,5,7 -tetraazaadamantane (hexamine) by the Bachmann process (Bachmann & Sheehan, 1949). As part of our search for the reaction mechanism involved in the nitrolysis of hexamine, we synthesized the title compound, and describe its structure here.

In (I), the hexahydrotriazine ring adopts a chair conformation with all three substituent groups lying on the same side of the triazine ring.The ring bond distances and angles are almost identical (the maximum deviation from the average C—N bond distance [1.44 (8) Å] is 0.01Å and the maximum deviation from the average bond angle [112 (3)°] is 3°). The three ring N atoms are equally distant from the plane through the C atoms (C1, C2 and C3) (0.40±0.06 (2) Å). This deviation is slightly larger than that found in hexahydro-1,3,5-triacetyl-1,3,5-triazine (TRAT) (Choi et al., 1975), due to the three different substituent groups on the hexahydrotriazine ring in (I), whereas in TRAT, the three groups are the same. In (I) the three substituent groups are essentially planar with maximum deviations from the mean plane of these groups for atoms N1, N2 and N3 of 0.02 (4), 0.09 (6) and 0.10 (3) Å respectively.

Experimental

The title compound was prepared from hexamine according to a literature method (Warman et al., 1973). Crystals suitable for X-ray analysis were obtained by slow evaporation of an nitromethane solution at room temperature.

Refinement

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.97 Å (alicyclic CH), 0.96 Å (methyl CH), and withUiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.
The molecular structure and atom numbering scheme for the title compound (I). Non-H atoms are shown as 50% probability displacement ellipsoids.
Fig. 2.
The packing of the title compound, viewed down the c axis of the unit cell.

Crystal data

C5H9N5O5F(000) = 456
Mr = 219.17Dx = 1.672 Mg m3
Monoclinic, P21/nMelting point: 431(2) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.8972 (18) ÅCell parameters from 3599 reflections
b = 10.061 (2) Åθ = 2.8–27.5°
c = 9.890 (2) ŵ = 0.15 mm1
β = 100.42 (3)°T = 293 K
V = 870.7 (3) Å3Block, colorless
Z = 40.50 × 0.50 × 0.40 mm

Data collection

Rigaku R-AXIS RAPID IP diffractometer1988 independent reflections
Radiation source: fine-focus sealed tube1419 reflections with I > 2σ(I)
graphiteRint = 0.028
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scansh = −11→11
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −13→13
Tmin = 0.929, Tmax = 0.943l = −12→12
3599 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.142w = 1/[σ2(Fo2) + (0.09P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
1988 reflectionsΔρmax = 0.28 e Å3
138 parametersΔρmin = −0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.242 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.47469 (19)0.41301 (16)0.32195 (16)0.0389 (4)
H1A0.50050.38370.41680.047*
H1B0.40000.48390.31700.047*
C20.72467 (19)0.35894 (19)0.26987 (18)0.0456 (4)
H2A0.80440.39410.22480.055*
H2B0.77130.33290.36240.055*
C30.51659 (19)0.19589 (16)0.23350 (19)0.0429 (4)
H3A0.47080.12920.16800.052*
H3B0.53920.15470.32360.052*
C40.26587 (18)0.29469 (17)0.16314 (15)0.0385 (4)
C50.1604 (2)0.4079 (2)0.1715 (2)0.0531 (5)
H5A0.06270.38920.11580.080*
H5B0.20200.48730.13900.080*
H5C0.14850.42010.26530.080*
N10.41055 (15)0.30361 (13)0.23592 (13)0.0357 (3)
N20.61111 (16)0.46206 (14)0.27642 (13)0.0405 (4)
N30.65682 (16)0.24375 (17)0.19558 (16)0.0491 (4)
N40.5835 (2)0.54679 (16)0.16262 (16)0.0550 (5)
N50.69287 (18)0.21008 (15)0.07159 (15)0.0468 (4)
O10.6820 (2)0.55437 (17)0.09159 (16)0.0839 (6)
O20.22571 (14)0.19538 (13)0.09572 (13)0.0525 (4)
O30.6163 (2)0.12455 (17)0.00671 (15)0.0723 (5)
O40.80447 (17)0.26203 (18)0.03929 (15)0.0685 (5)
O50.4676 (2)0.61206 (16)0.14783 (19)0.0819 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0417 (9)0.0443 (9)0.0292 (7)−0.0021 (7)0.0023 (6)−0.0039 (6)
C20.0363 (9)0.0593 (11)0.0390 (9)−0.0075 (8)0.0013 (7)−0.0027 (8)
C30.0415 (9)0.0399 (9)0.0479 (9)−0.0033 (7)0.0094 (7)0.0018 (7)
C40.0371 (8)0.0507 (9)0.0274 (7)−0.0073 (7)0.0055 (6)0.0032 (7)
C50.0363 (9)0.0751 (13)0.0465 (10)0.0059 (9)0.0041 (7)0.0011 (9)
N10.0341 (7)0.0390 (7)0.0327 (7)−0.0025 (5)0.0024 (5)−0.0012 (5)
N20.0441 (8)0.0439 (8)0.0297 (7)−0.0106 (6)−0.0034 (6)0.0009 (6)
N30.0420 (8)0.0595 (9)0.0480 (9)−0.0067 (7)0.0141 (6)−0.0122 (7)
N40.0761 (11)0.0453 (9)0.0368 (8)−0.0260 (8)−0.0076 (8)0.0032 (7)
N50.0487 (9)0.0542 (9)0.0368 (8)0.0130 (7)0.0059 (7)0.0037 (7)
O10.1182 (14)0.0832 (12)0.0533 (9)−0.0413 (11)0.0236 (10)0.0118 (8)
O20.0479 (7)0.0615 (8)0.0450 (7)−0.0159 (6)0.0006 (6)−0.0099 (6)
O30.1003 (13)0.0668 (9)0.0496 (8)−0.0102 (9)0.0129 (8)−0.0185 (7)
O40.0577 (9)0.0945 (11)0.0598 (9)0.0010 (9)0.0281 (7)−0.0005 (8)
O50.0946 (13)0.0625 (10)0.0768 (12)0.0044 (9)−0.0163 (9)0.0260 (9)

Geometric parameters (Å, °)

C1—N11.4440 (19)C4—O21.2184 (19)
C1—N21.455 (2)C4—N11.359 (2)
C1—H1A0.9700C4—C51.487 (2)
C1—H1B0.9700C5—H5A0.9600
C2—N31.445 (2)C5—H5B0.9600
C2—N21.458 (2)C5—H5C0.9600
C2—H2A0.9700N2—N41.398 (2)
C2—H2B0.9700N3—N51.365 (2)
C3—N11.440 (2)N4—O51.209 (2)
C3—N31.449 (2)N4—O11.220 (2)
C3—H3A0.9700N5—O31.208 (2)
C3—H3B0.9700N5—O41.215 (2)
N1—C1—N2109.82 (13)C4—C5—H5A109.5
N1—C1—H1A109.7C4—C5—H5B109.5
N2—C1—H1A109.7H5A—C5—H5B109.5
N1—C1—H1B109.7C4—C5—H5C109.5
N2—C1—H1B109.7H5A—C5—H5C109.5
H1A—C1—H1B108.2H5B—C5—H5C109.5
N3—C2—N2111.37 (13)C4—N1—C3120.14 (13)
N3—C2—H2A109.4C4—N1—C1126.71 (14)
N2—C2—H2A109.4C3—N1—C1113.15 (13)
N3—C2—H2B109.4N4—N2—C1114.91 (14)
N2—C2—H2B109.4N4—N2—C2114.86 (15)
H2A—C2—H2B108.0C1—N2—C2113.33 (13)
N1—C3—N3110.59 (14)N5—N3—C2120.76 (15)
N1—C3—H3A109.5N5—N3—C3120.23 (15)
N3—C3—H3A109.5C2—N3—C3115.80 (14)
N1—C3—H3B109.5O5—N4—O1125.60 (18)
N3—C3—H3B109.5O5—N4—N2116.75 (17)
H3A—C3—H3B108.1O1—N4—N2117.51 (19)
O2—C4—N1119.99 (16)O3—N5—O4125.20 (17)
O2—C4—C5122.20 (16)O3—N5—N3116.89 (16)
N1—C4—C5117.81 (15)O4—N5—N3117.74 (16)
O2—C4—N1—C30.0 (2)N2—C2—N3—N5112.60 (17)
C5—C4—N1—C3178.88 (14)N2—C2—N3—C3−47.2 (2)
O2—C4—N1—C1−179.01 (15)N1—C3—N3—N5−110.68 (18)
C5—C4—N1—C1−0.2 (2)N1—C3—N3—C249.2 (2)
N3—C3—N1—C4126.86 (15)C1—N2—N4—O528.9 (2)
N3—C3—N1—C1−53.98 (18)C2—N2—N4—O5163.00 (15)
N2—C1—N1—C4−123.74 (16)C1—N2—N4—O1−155.26 (16)
N2—C1—N1—C357.17 (17)C2—N2—N4—O1−21.1 (2)
N1—C1—N2—N480.18 (16)C2—N3—N5—O3−169.79 (16)
N1—C1—N2—C2−54.65 (17)C3—N3—N5—O3−10.9 (2)
N3—C2—N2—N4−85.27 (16)C2—N3—N5—O414.7 (2)
N3—C2—N2—C149.60 (18)C3—N3—N5—O4173.59 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2012).

References

  • Bachmann, W. E. & Sheehan, J. C. (1949). J. Am. Chem. Soc.71, 1482–1485.
  • Choi, C. S., Santoro, A. & Marinkas, P. L. (1975). Acta Cryst. B31, 2934–2937.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2000). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2000). CrystalStructure. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Warman, M., Siele, V. I. & Gilbert, E. E. (1973). J. Heterocycl. Chem.10, 97–98.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography