PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1346.
Published online 2009 October 10. doi:  10.1107/S1600536809040525
PMCID: PMC2971426

Tricarbon­yl(η6-flavone)chromium(0)

Abstract

In the title compound, [Cr(C15H10O2)(CO)3], the Cr(CO)3 unit exhibits a three-legged piano-stool conformation. The chromium metal centre is coordinated by the phenyl ring of the flavone ligand [Cr—(phenyl centroid) distance = 1.709 (1) Å]. The ligand is approximately planar, the dihedral angles between the γ-pyrone ring and the phenyl ring and between the γ-pyrone and the phenyl­ene ring being 2.91 (5) and 3.90 (5)°, respectively. The mol­ecular packing shows π–π stacking between the flavone ligands of neighbouring mol­ecules.

Related literature

For the crystal structure of Cr(CO)3(C15H12O2), see: Dominique et al. (1999 [triangle]). For comparison bond distances, see: Allen (2002 [triangle]). For related structures, see: Zeller et al. (2004 [triangle]); Zhang et al. (2005 [triangle]); Czerwinski et al. (2003 [triangle]); Guzei & Czerwinski (2004 [triangle]). For the biological activity of flavonoids, see: Rice-Evans & Packer (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1346-scheme1.jpg

Experimental

Crystal data

  • [Cr(C15H10O2)(CO)3]
  • M r = 358.26
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1346-efi1.jpg
  • a = 7.2853 (2) Å
  • b = 9.6427 (3) Å
  • c = 11.6466 (4) Å
  • α = 78.545 (1)°
  • β = 79.554 (1)°
  • γ = 70.005 (1)°
  • V = 747.81 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.79 mm−1
  • T = 173 K
  • 0.45 × 0.32 × 0.19 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.717, T max = 0.864
  • 8083 measured reflections
  • 3600 independent reflections
  • 3062 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.105
  • S = 1.06
  • 3600 reflections
  • 205 parameters
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809040525/ng2657sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040525/ng2657Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the University of the Free State and SASOL to JHvT is gratefully acknowledged. We would like to express our gratitude to the School of Chemistry at the University of the Witwatersrand for the use of the diffractometer. Special thanks are due to Dr M.A. Fernandes. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of SASOL.

supplementary crystallographic information

Comment

Flavanoids are an extensive group of polyphenolic compounds that occur commonly in plants. Many flavonoids are known to show biological activities such as anti-inflammatory, antibacterial and antifungal properties (Rice-Evans & Packer., 2003) The steric influence from a Cr(CO)3 moiety combined with the electronic alteration of an arene ring, via metal coordination, made the tricarbonyl(arene)chromium complexes very popular intermediates in regioselective organic synthesis (Dominique et al., 1999).

In the course of our work on flavanoids we isolated and characterized the title compound, (I), [Cr(CO)3(C15H10O2)], where (C15H10O2) = flavone. The title compound crystallized in the triclinic space group P-1, with Z = 2 (Fig.1). The chromium metal centre coordinated to the phenyl ring of the flavone moiety and together with the tricarbonyl group a three-legged piano-stool conformation is exhibited. The Cr—C(arene) distances range from 2.209 (2) to 2.225 (2) Å and the chromium metal centre is displaced by 1.709 (1) Å from the B-η6-coordinated arene ring centre. The carbonyl groups are fairly linear with Cr—C(carbonyl)—O angles ranging from 179.0 (2) to 179.4 (2)°. The Cr—C(carbonyl) bonds of Cr—C11, Cr—C12 and Cr—C13 are 1.847 (2), 1.844 (2) and 1.842 (2) Å respectively. While the carbonyl distances of C11—O1, C12—O2 and C13—O3 are 1.153 (3), 1.155 (3) and 1.153 (3) respectively. These carbonyl distances are well within the normal range, see Allen (2002).

The phenyl ring of the flavone backbone is essentialy planar (r.m.s of fitted atoms C1'-C6' = 0.0083 Å). The γ-pyrone and the benzene ring of the flavone skeleton is in the same plane as the phenyl ring. A small molecular disorder is displayed by the dihedral angle of 2.91° between the γ-pyrone and the phenyl ring and the torsion angle of -178.78 (15)° formed by atoms C2'-C1'-C2—O5. The benzene ring is lifted out of the molecular plane, with a 3.90 (5)° dihedral angle between the γ-pyrone and the benzene ring. Other molecular geometrical parameters is in good agreement with literature values, see Allen (2002). Selected geometrical parameters is presented in Table 1.

The molecular packing displays two types of ligand to ligand π-π stacking. This is on opposite sides of the 2-phenylchromane backbone (Fig.2). One type of packing is where the tricarbonyl-metal moieties of neighbouring molecules are directed away from one another resulting in a ligand to ligand π-π stacking between the γ-pyrone and phenyl rings, with a plane to plane distance of 3.354 Å. The other type of π-π stacking is between the γ-pyrone and benzene rings of neighbouring molecules, with a plane to plane distance of 3.418 Å, this π-π stacking is secondarily stabilized by soft contacts between O1···H5 [2.761 (3) Å] and a O1···H5—C5 angle of 129.8 (1)°.

Experimental

A solution of flavone (1.01 g; 4.5 mmol) and Cr(CO)6 (1.0 g; 4.6 mmol; 1 eq.) in Bu2O:THF (9:1; 10 ml per 100 mg Cr(CO)6) was degassed with argon, using standard Schlenk techniques, and refluxed (48 h) under an oxygen free atmosphere. The reaction mixture was cooled to room temperature and the solvent evaporated in vacuo. Purification through flash column-chromatography yielded tricarbonyl(B-η6-flavone)chromium(0) (0.70 g; 42.9%) as an orange solid. Recrystallization from diethyl ether yielded orange crystals suitable for single-crystal diffraction data collection.

Rf 0.11 (H:A:DCM; 7:1:2); Mp 160.6 °C; Note: A, B and C-ring labelling refers to the benzene, phenyl and γ-pyrone rings respectively. 1H NMR (600 MHz, CDCl3) δ p.p.m. 8.21 (1H, d, J = 7.91 Hz, H-5), 7.72 (1H, dd, J = 7.53, 7.91 Hz, H-6), 7.54 (1H, d, J = 8.28 Hz, H-8), 7.44 (1H, dd, J = 7.53, 8.28 Hz, H-8), 6.61 (1H, s, H-3), 6.00 (2H, d, J = 6.38 Hz, H-2' and H-6'), 5.57 (1H, t, J = 6.14 Hz, H-4'), 5.41 (2H, dd, J = 6.14, 6.38 Hz, H-3' and H-5'); 13C NMR (151 MHz, CDCl3) δ p.p.m. 89.91 (C-3' and C-5'), 91.04 (C-2' and C-6'), 93.77 (C-4'), 94.98, 107.38 (C-3), 118.08 (C-8), 124.0, 125.79 (C-5 or C-7), 125.92 (C-5 or C-7), 134.33 (C-6), 156.13, 161.02, 177.56, 231.08(–Cr(CO)3); MS (MS Scheme 4) m/z 358 (M+, 4.4), 330 (0.9), 302 (2.1), 274 (11.3), 239 (2.2), 223 (100.0), 210 (0.6), 183 (2.6), 155 (3.5), 121 (29.0), 103 (4.7).

Refinement

The H atoms were positioned geometrically and refined using a riding model with fixed C—H distances of 0.93 Å (CH) [Uiso(H) = 1.2Ueq] and 0.96 Å.

The highest density peak is 0.36 located 0.76 Å from C3 and the deepest hole is -0.35 located at 0.61 Å from Cr.

Figures

Fig. 1.
A view of (I) showing the atom-numbering scheme with displacement ellipsoids at the 30% probability level.
Fig. 2.
Indication of molecular packing in the unit-cell, displaying π-stacking. H-atoms are omitted for clarity. Symmetry operators 1) x; y; z. 2) 1 - x; 1 - y; 1 - z. 3) 1 + x; 1 + y; z.

Crystal data

[Cr(C15H10O2)(CO)3]Z = 2
Mr = 358.26F(000) = 364
Triclinic, P1Dx = 1.591 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2853 (2) ÅCell parameters from 3694 reflections
b = 9.6427 (3) Åθ = 2.3–28.2°
c = 11.6466 (4) ŵ = 0.79 mm1
α = 78.545 (1)°T = 173 K
β = 79.554 (1)°Irregular, orange
γ = 70.005 (1)°0.45 × 0.32 × 0.19 mm
V = 747.81 (4) Å3

Data collection

Bruker APEXII CCD diffractometer3600 independent reflections
Radiation source: fine-focus sealed tube3062 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 28°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −9→8
Tmin = 0.717, Tmax = 0.864k = −12→12
8083 measured reflectionsl = −15→14

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037w = 1/[σ2(Fo2) + (0.0513P)2 + 0.3895P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.52 e Å3
3600 reflectionsΔρmin = −0.55 e Å3
205 parameters

Special details

Experimental. The intensity data was collected on a Bruker Apex II CCD diffractometer using an exposure time of 10 s/frame. The 509 frames were collected with a frame width of 0.5° covering up to θ = 28° with 99.8% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cr0.44722 (4)0.35008 (3)0.85182 (3)0.02434 (11)
O50.6342 (2)0.24078 (16)0.52790 (12)0.0282 (3)
O41.1793 (2)0.29078 (17)0.44675 (15)0.0349 (4)
O30.2698 (2)0.3373 (2)1.10514 (14)0.0421 (4)
C20.6832 (3)0.3367 (2)0.57827 (16)0.0241 (4)
C30.8617 (3)0.3562 (2)0.55295 (18)0.0267 (4)
H30.88790.42470.5910.032*
C100.9548 (3)0.1789 (2)0.41199 (17)0.0249 (4)
C130.3382 (3)0.3412 (2)1.00763 (19)0.0292 (3)
O10.4968 (3)0.02553 (19)0.86574 (17)0.0499 (5)
C90.7671 (3)0.1667 (2)0.44291 (18)0.0273 (4)
C120.6912 (3)0.2990 (2)0.90154 (18)0.0292 (3)
O20.8445 (2)0.26801 (19)0.93196 (16)0.0425 (3)
C51.0793 (3)0.1028 (2)0.32237 (19)0.0311 (4)
H51.20830.10970.29990.037*
C2'0.5336 (3)0.5228 (2)0.72042 (18)0.0278 (4)
H2'0.6530.54610.70820.033*
C1'0.5171 (3)0.4148 (2)0.65939 (17)0.0257 (4)
C41.0145 (3)0.2762 (2)0.46978 (17)0.0255 (4)
C6'0.3370 (3)0.3817 (2)0.68058 (18)0.0306 (4)
H6'0.32260.30990.64060.037*
C110.4775 (3)0.1501 (2)0.86148 (18)0.02916 (17)
C3'0.3758 (3)0.5956 (2)0.79855 (19)0.0317 (5)
H3'0.38720.670.83690.038*
C80.7000 (4)0.0807 (2)0.3874 (2)0.0348 (5)
H80.57120.07330.40940.042*
C4'0.2009 (3)0.5587 (3)0.8202 (2)0.0354 (5)
H4'0.09640.60490.8760.042*
C5'0.1799 (3)0.4541 (3)0.7601 (2)0.0361 (5)
H5'0.05970.43190.77280.043*
C70.8262 (4)0.0070 (3)0.3002 (2)0.0398 (5)
H70.7839−0.05280.26170.048*
C61.0148 (4)0.0180 (2)0.2667 (2)0.0381 (5)
H61.099−0.03320.20550.046*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cr0.01993 (17)0.02901 (19)0.02080 (17)−0.00703 (13)−0.00249 (12)0.00247 (12)
O50.0261 (7)0.0341 (7)0.0279 (7)−0.0153 (6)−0.0025 (6)−0.0027 (6)
O40.0274 (8)0.0387 (8)0.0435 (9)−0.0175 (7)0.0046 (7)−0.0124 (7)
O30.0351 (9)0.0547 (10)0.0292 (8)−0.0129 (8)0.0047 (7)−0.0001 (7)
C20.0270 (10)0.0263 (9)0.0193 (9)−0.0107 (8)−0.0069 (8)0.0040 (7)
C30.0283 (10)0.0280 (10)0.0264 (10)−0.0130 (8)−0.0034 (8)−0.0029 (8)
C100.0284 (10)0.0215 (9)0.0242 (9)−0.0093 (8)−0.0069 (8)0.0033 (7)
C130.0240 (7)0.0315 (7)0.0279 (7)−0.0069 (6)−0.0014 (6)0.0000 (6)
O10.0698 (13)0.0385 (9)0.0470 (10)−0.0233 (9)−0.0162 (10)0.0000 (8)
C90.0333 (11)0.0253 (9)0.0247 (9)−0.0127 (8)−0.0075 (8)0.0030 (8)
C120.0240 (7)0.0315 (7)0.0279 (7)−0.0069 (6)−0.0014 (6)0.0000 (6)
O20.0299 (6)0.0450 (6)0.0502 (6)−0.0059 (7)−0.0131 (7)−0.0045 (8)
C50.0355 (11)0.0258 (10)0.0305 (10)−0.0085 (9)−0.0039 (9)−0.0034 (8)
C2'0.0260 (10)0.0272 (10)0.0264 (10)−0.0083 (8)−0.0029 (8)0.0044 (8)
C1'0.0222 (9)0.0312 (10)0.0199 (9)−0.0083 (8)−0.0037 (7)0.0052 (7)
C40.0284 (10)0.0241 (9)0.0244 (9)−0.0116 (8)−0.0020 (8)0.0001 (7)
C6'0.0258 (10)0.0405 (12)0.0239 (10)−0.0111 (9)−0.0070 (8)0.0036 (8)
C110.0240 (2)0.03146 (19)0.02793 (16)−0.0069 (6)−0.0014 (6)0.0000 (6)
C3'0.0316 (11)0.0271 (10)0.0284 (10)−0.0026 (8)−0.0039 (9)0.0022 (8)
C80.0392 (12)0.0337 (11)0.0379 (12)−0.0180 (10)−0.0123 (10)−0.0014 (9)
C4'0.0249 (11)0.0385 (12)0.0302 (11)0.0005 (9)−0.0026 (9)0.0039 (9)
C5'0.0190 (10)0.0506 (13)0.0312 (11)−0.0079 (9)−0.0061 (8)0.0081 (10)
C70.0534 (15)0.0326 (11)0.0410 (13)−0.0176 (11)−0.0167 (11)−0.0055 (10)
C60.0457 (14)0.0303 (11)0.0368 (12)−0.0072 (10)−0.0060 (10)−0.0095 (9)

Geometric parameters (Å, °)

Cr—C131.842 (2)C9—C81.396 (3)
Cr—C121.844 (2)C12—O21.155 (3)
Cr—C111.847 (2)C5—C61.376 (3)
Cr—C2'2.206 (2)C5—H50.95
Cr—C4'2.209 (2)C2'—C3'1.402 (3)
Cr—C6'2.211 (2)C2'—C1'1.420 (3)
Cr—C1'2.2180 (19)C2'—H2'0.95
Cr—C5'2.221 (2)C1'—C6'1.422 (3)
Cr—C3'2.225 (2)C6'—C5'1.407 (3)
O5—C21.358 (2)C6'—H6'0.95
O5—C91.374 (3)C3'—C4'1.404 (3)
O4—C41.232 (2)C3'—H3'0.95
O3—C131.153 (3)C8—C71.373 (3)
C2—C31.349 (3)C8—H80.95
C2—C1'1.473 (3)C4'—C5'1.399 (3)
C3—C41.446 (3)C4'—H4'0.95
C3—H30.95C5'—H5'0.95
C10—C91.388 (3)C7—C61.393 (4)
C10—C51.399 (3)C7—H70.95
C10—C41.469 (3)C6—H60.95
O1—C111.153 (3)
C13—Cr—C1288.71 (9)C6—C5—H5120
C13—Cr—C1188.80 (9)C10—C5—H5120
C12—Cr—C1189.60 (9)C3'—C2'—C1'120.78 (19)
C13—Cr—C2'134.26 (9)C3'—C2'—Cr72.30 (12)
C12—Cr—C2'86.71 (8)C1'—C2'—Cr71.73 (11)
C11—Cr—C2'136.58 (9)C3'—C2'—H2'119.6
C13—Cr—C4'85.97 (9)C1'—C2'—H2'119.6
C12—Cr—C4'135.57 (9)Cr—C2'—H2'128.7
C11—Cr—C4'134.24 (9)C2'—C1'—C6'118.15 (19)
C2'—Cr—C4'66.83 (8)C2'—C1'—C2121.01 (18)
C13—Cr—C6'135.41 (9)C6'—C1'—C2120.83 (18)
C12—Cr—C6'135.54 (9)C2'—C1'—Cr70.84 (11)
C11—Cr—C6'86.67 (9)C6'—C1'—Cr70.99 (11)
C2'—Cr—C6'67.00 (8)C2—C1'—Cr128.43 (13)
C4'—Cr—C6'66.69 (9)O4—C4—C3123.10 (18)
C13—Cr—C1'165.52 (8)O4—C4—C10122.58 (19)
C12—Cr—C1'101.05 (8)C3—C4—C10114.29 (17)
C11—Cr—C1'101.82 (8)C5'—C6'—C1'120.8 (2)
C2'—Cr—C1'37.43 (8)C5'—C6'—Cr71.90 (12)
C4'—Cr—C1'79.57 (8)C1'—C6'—Cr71.55 (11)
C6'—Cr—C1'37.46 (7)C5'—C6'—H6'119.6
C13—Cr—C5'101.29 (9)C1'—C6'—H6'119.6
C12—Cr—C5'165.57 (9)Cr—C6'—H6'129.4
C11—Cr—C5'100.88 (9)O1—C11—Cr179.00 (19)
C2'—Cr—C5'78.86 (8)C2'—C3'—C4'120.1 (2)
C4'—Cr—C5'36.82 (9)C2'—C3'—Cr70.83 (12)
C6'—Cr—C5'37.02 (8)C4'—C3'—Cr70.90 (12)
C1'—Cr—C5'67.29 (8)C2'—C3'—H3'119.9
C13—Cr—C3'100.70 (9)C4'—C3'—H3'119.9
C12—Cr—C3'101.88 (9)Cr—C3'—H3'131
C11—Cr—C3'165.16 (9)C7—C8—C9117.8 (2)
C2'—Cr—C3'36.87 (8)C7—C8—H8121.1
C4'—Cr—C3'36.92 (8)C9—C8—H8121.1
C6'—Cr—C3'78.55 (8)C5'—C4'—C3'120.2 (2)
C1'—Cr—C3'67.01 (8)C5'—C4'—Cr72.06 (13)
C5'—Cr—C3'66.27 (9)C3'—C4'—Cr72.17 (12)
C2—O5—C9118.91 (15)C5'—C4'—H4'119.9
C3—C2—O5122.59 (18)C3'—C4'—H4'119.9
C3—C2—C1'126.27 (18)Cr—C4'—H4'128
O5—C2—C1'111.14 (16)C4'—C5'—C6'119.9 (2)
C2—C3—C4122.13 (18)C4'—C5'—Cr71.11 (12)
C2—C3—H3118.9C6'—C5'—Cr71.08 (11)
C4—C3—H3118.9C4'—C5'—H5'120
C9—C10—C5118.77 (19)C6'—C5'—H5'120
C9—C10—C4119.53 (19)Cr—C5'—H5'130.3
C5—C10—C4121.63 (18)C8—C7—C6121.5 (2)
O3—C13—Cr179.21 (19)C8—C7—H7119.2
O5—C9—C10122.38 (17)C6—C7—H7119.2
O5—C9—C8115.70 (19)C5—C6—C7120.0 (2)
C10—C9—C8121.9 (2)C5—C6—H6120
O2—C12—Cr179.4 (2)C7—C6—H6120
C6—C5—C10119.9 (2)
C9—O5—C2—C3−3.8 (3)C11—Cr—C6'—C5'113.02 (14)
C9—O5—C2—C1'175.14 (15)C2'—Cr—C6'—C5'−102.38 (15)
O5—C2—C3—C40.1 (3)C4'—Cr—C6'—C5'−28.79 (13)
C1'—C2—C3—C4−178.63 (17)C1'—Cr—C6'—C5'−132.57 (19)
C2—O5—C9—C104.3 (3)C3'—Cr—C6'—C5'−65.58 (14)
C2—O5—C9—C8−174.35 (17)C13—Cr—C6'—C1'160.68 (13)
C5—C10—C9—O5−178.36 (17)C12—Cr—C6'—C1'−28.37 (18)
C4—C10—C9—O5−1.2 (3)C11—Cr—C6'—C1'−114.41 (13)
C5—C10—C9—C80.2 (3)C2'—Cr—C6'—C1'30.19 (12)
C4—C10—C9—C8177.37 (18)C4'—Cr—C6'—C1'103.78 (14)
C9—C10—C5—C60.0 (3)C5'—Cr—C6'—C1'132.57 (19)
C4—C10—C5—C6−177.10 (19)C3'—Cr—C6'—C1'66.99 (13)
C13—Cr—C2'—C3'−29.87 (18)C1'—C2'—C3'—C4'2.1 (3)
C12—Cr—C2'—C3'−114.84 (14)Cr—C2'—C3'—C4'−52.98 (17)
C11—Cr—C2'—C3'159.22 (14)C1'—C2'—C3'—Cr55.03 (16)
C4'—Cr—C2'—C3'28.54 (13)C13—Cr—C3'—C2'158.72 (13)
C6'—Cr—C2'—C3'101.93 (14)C12—Cr—C3'—C2'67.79 (14)
C1'—Cr—C2'—C3'132.14 (18)C11—Cr—C3'—C2'−72.2 (4)
C5'—Cr—C2'—C3'65.10 (13)C4'—Cr—C3'—C2'−133.0 (2)
C13—Cr—C2'—C1'−162.01 (13)C6'—Cr—C3'—C2'−66.76 (13)
C12—Cr—C2'—C1'113.01 (13)C1'—Cr—C3'—C2'−29.31 (12)
C11—Cr—C2'—C1'27.07 (17)C5'—Cr—C3'—C2'−103.55 (14)
C4'—Cr—C2'—C1'−103.61 (13)C13—Cr—C3'—C4'−68.25 (15)
C6'—Cr—C2'—C1'−30.22 (12)C12—Cr—C3'—C4'−159.19 (14)
C5'—Cr—C2'—C1'−67.04 (12)C11—Cr—C3'—C4'60.8 (4)
C3'—Cr—C2'—C1'−132.14 (18)C2'—Cr—C3'—C4'133.0 (2)
C3'—C2'—C1'—C6'−0.5 (3)C6'—Cr—C3'—C4'66.26 (13)
Cr—C2'—C1'—C6'54.75 (15)C1'—Cr—C3'—C4'103.72 (14)
C3'—C2'—C1'—C2−179.27 (17)C5'—Cr—C3'—C4'29.48 (13)
Cr—C2'—C1'—C2−123.97 (17)O5—C9—C8—C7178.69 (19)
C3'—C2'—C1'—Cr−55.30 (17)C10—C9—C8—C70.0 (3)
C3—C2—C1'—C2'0.1 (3)C2'—C3'—C4'—C5'−2.9 (3)
O5—C2—C1'—C2'−178.79 (16)Cr—C3'—C4'—C5'−55.84 (18)
C3—C2—C1'—C6'−178.62 (18)C2'—C3'—C4'—Cr52.95 (17)
O5—C2—C1'—C6'2.5 (2)C13—Cr—C4'—C5'−114.93 (14)
C3—C2—C1'—Cr−89.2 (2)C12—Cr—C4'—C5'161.05 (14)
O5—C2—C1'—Cr91.89 (19)C11—Cr—C4'—C5'−30.55 (19)
C13—Cr—C1'—C2'62.2 (4)C2'—Cr—C4'—C5'102.77 (14)
C12—Cr—C1'—C2'−69.43 (13)C6'—Cr—C4'—C5'28.94 (13)
C11—Cr—C1'—C2'−161.36 (12)C1'—Cr—C4'—C5'65.85 (13)
C4'—Cr—C1'—C2'65.30 (12)C3'—Cr—C4'—C5'131.3 (2)
C6'—Cr—C1'—C2'130.39 (18)C13—Cr—C4'—C3'113.80 (14)
C5'—Cr—C1'—C2'101.66 (14)C12—Cr—C4'—C3'29.78 (19)
C3'—Cr—C1'—C2'28.90 (12)C11—Cr—C4'—C3'−161.82 (14)
C13—Cr—C1'—C6'−68.2 (4)C2'—Cr—C4'—C3'−28.50 (13)
C12—Cr—C1'—C6'160.18 (13)C6'—Cr—C4'—C3'−102.33 (14)
C11—Cr—C1'—C6'68.24 (14)C1'—Cr—C4'—C3'−65.42 (13)
C2'—Cr—C1'—C6'−130.39 (18)C5'—Cr—C4'—C3'−131.3 (2)
C4'—Cr—C1'—C6'−65.09 (13)C3'—C4'—C5'—C6'2.2 (3)
C5'—Cr—C1'—C6'−28.73 (13)Cr—C4'—C5'—C6'−53.67 (18)
C3'—Cr—C1'—C6'−101.49 (14)C3'—C4'—C5'—Cr55.89 (17)
C13—Cr—C1'—C2177.0 (3)C1'—C6'—C5'—C4'−0.7 (3)
C12—Cr—C1'—C245.44 (19)Cr—C6'—C5'—C4'53.69 (18)
C11—Cr—C1'—C2−46.49 (19)C1'—C6'—C5'—Cr−54.40 (17)
C2'—Cr—C1'—C2114.9 (2)C13—Cr—C5'—C4'67.28 (14)
C4'—Cr—C1'—C2−179.83 (19)C12—Cr—C5'—C4'−65.8 (4)
C6'—Cr—C1'—C2−114.7 (2)C11—Cr—C5'—C4'158.24 (14)
C5'—Cr—C1'—C2−143.5 (2)C2'—Cr—C5'—C4'−66.03 (13)
C3'—Cr—C1'—C2143.77 (19)C6'—Cr—C5'—C4'−132.4 (2)
C2—C3—C4—O4−178.92 (19)C1'—Cr—C5'—C4'−103.38 (14)
C2—C3—C4—C102.9 (3)C3'—Cr—C5'—C4'−29.55 (13)
C9—C10—C4—O4179.48 (18)C13—Cr—C5'—C6'−160.28 (13)
C5—C10—C4—O4−3.4 (3)C12—Cr—C5'—C6'66.6 (4)
C9—C10—C4—C3−2.3 (3)C11—Cr—C5'—C6'−69.33 (14)
C5—C10—C4—C3174.81 (18)C2'—Cr—C5'—C6'66.40 (13)
C2'—C1'—C6'—C5'−0.1 (3)C4'—Cr—C5'—C6'132.4 (2)
C2—C1'—C6'—C5'178.61 (18)C1'—Cr—C5'—C6'29.05 (12)
Cr—C1'—C6'—C5'54.56 (17)C3'—Cr—C5'—C6'102.88 (14)
C2'—C1'—C6'—Cr−54.68 (16)C9—C8—C7—C6−0.5 (3)
C2—C1'—C6'—Cr124.05 (17)C10—C5—C6—C7−0.4 (3)
C13—Cr—C6'—C5'28.11 (19)C8—C7—C6—C50.7 (4)
C12—Cr—C6'—C5'−160.94 (14)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2657).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2004). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Czerwinski, C. J., Guzei, I. A., Cordes, T. J., Czerwinski, K. M. & Mlodik, N. A. (2003). Acta Cryst. C59, m499–m500. [PubMed]
  • Dominique, S., Lepoivre, A., Lemiere, G., Rapatopoulou, C. P. & Klouras, N. D. (1999). Monatsh. Chem.130, 305–311.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Guzei, I. A. & Czerwinski, C. J. (2004). Acta Cryst. C60, m615–m617. [PubMed]
  • Rice-Evans, C. A. & Packer, L. (2003). Flavonoids in Health and Disease, 2nd ed. New York: Marcel Dekker Inc.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zeller, M., Hunter, A. D. & Takas, N. J. (2004). Acta Cryst. E60, m434–m435.
  • Zhang, Z. T., Wang, X. B., Wang, Q. Y. & Wu, L. N. (2005). J. Chem. Crystallogr.35, 923–929.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography