PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1291.
Published online 2009 October 3. doi:  10.1107/S1600536809039658
PMCID: PMC2971413

Di-μ-aqua-bis­(μ-pyridazine-4-carboxyl­ato-κ2 N:N′)bis­[triaqua­(pyridazine-4-carboxyl­ato-κ2 O,O′)lead(II)] dihydrate

Abstract

The structure of the title compound, [Pb2(C5H3N2O2)4(H2O)6]·2H2O, is composed of dimeric mol­ecules in which two symmetry-related Pb2+ ions are bridged by a pair of two pyridazine-4-carboxyl­ate ligand mol­ecules via both heterocyclic N atoms and two water O atoms. Each Pb2+ ion is also coordinated by two carboxyl­ate O atoms and three water O atoms, leading to a highly irregular coordination polyhedron around Pb2+. The dimers are inter­connected by hydrogen bonds between coordinated and uncoordinated water mol­ecules and the carboxyl­ate O atoms. O—H(...)N inter­actions are also present.

Related literature

For the crystal structure of pyridazine-4-carboxylic acid hydro­chloride, see: Starosta & Leciejewicz (2008 [triangle]). Centrosymmetric dimeric mol­ecules were reported in the structure of a calcium(II) complex with pyridazine-3-dicarboxyl­ate and water ligands (Starosta & Leciejewicz, 2007 [triangle]) and an uranyl complex with the same ligands (Leciejewicz & Starosta, (2009 [triangle]). Each dimer shows a different bridging mode.

An external file that holds a picture, illustration, etc.
Object name is e-65-m1291-scheme1.jpg

Experimental

Crystal data

  • [Pb2(C5H3N2O2)4(H2O)6]·2H2O
  • M r = 1086.92
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1291-efi1.jpg
  • a = 7.0762 (14) Å
  • b = 9.2967 (19) Å
  • c = 12.830 (3) Å
  • α = 92.05 (3)°
  • β = 105.13 (3)°
  • γ = 102.85 (3)°
  • V = 790.4 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 10.73 mm−1
  • T = 293 K
  • 0.35 × 0.18 × 0.03 mm

Data collection

  • Kuma KM-4 four-circle diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008 [triangle]) T min = 0.254, T max = 0.762
  • 4862 measured reflections
  • 4512 independent reflections
  • 3958 reflections with I > 2σ(I)
  • R int = 0.016
  • 3 standard reflections every 200 reflections intensity decay: 1.2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.122
  • S = 1.06
  • 4512 reflections
  • 253 parameters
  • 15 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 5.63 e Å−3
  • Δρmin = −3.77 e Å−3

Data collection: KM-4 Software (Kuma, 1996 [triangle]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809039658/bv2128sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039658/bv2128Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The structure of the title compound (I) is built of dimeric molecules (Fig.1) in which two symmetry related, nine-coordinate Pb2+ ions are chelated by two pairs of pyridazine-4-carboxylate anions via their both hetero-ring atoms, each pair showing different chelating mode: one uses both its hetero-ring N atoms to bridge the metal ions, its deprotonated carboxylate O atoms are left inactive in coordination, the other coordinates the Pb2+ions only via carboxylate groups which act as bidentate. In addition, the Pb2+ ions are bridged by a pair of water molecules. Three coordinated water O atoms complete the coordination enviroment of Pb2+ ions. The coordination geometry around a metal ion is highly irregular. Pyridazine rings are planar with r.m.s. 0.0081 (2)Å (ligand 1) and 0.0030 (2)Å (ligand 2). The coordinated (C27/O21/O22) and non-coordinated (C17/O11/O12) carboxylic groups make dihedral angles of 5.6 (1)° and 11.9 (1)° with their respective pyridazine rings. A packing diagram of (I) displayed in Fig.2 shows how the dimers are linked by a network of hydrogen bonds. Their relevant geometrical parameters are listed in Table 1.

Experimental

2 Mmol of pyridazine-4-carboxylic acid were dissolved in 100 ml of hot water and boiled for two hours with small excess of Pb(OH)2. After cooling to room temperature the mixture was filtered and left to crystallize. Few days later colorless single crystals were found in the mother liquid. They were separated, washed with cold ethanol and dried in air.

Refinement

H atoms attached to pyridazine-ring C atoms were positioned geometrically and refined with a riding model using AFIX43 instruction. The positions of water H atoms were initially located from Fourier maps and refined isotropically with restraints on O—H distance (0.86 Å) and H—O—H angle.

Figures

Fig. 1.
A dimer of (1) with atom labelling scheme and 50% probability displacement ellipsoids.
Fig. 2.
Packing diagram of the structure.

Crystal data

[Pb2(C5H3N2O2)4(H2O)6]·2H2OZ = 1
Mr = 1086.92F(000) = 516
Triclinic, P1Dx = 2.283 Mg m3
a = 7.0762 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2967 (19) ÅCell parameters from 25 reflections
c = 12.830 (3) Åθ = 6–15°
α = 92.05 (3)°µ = 10.73 mm1
β = 105.13 (3)°T = 293 K
γ = 102.85 (3)°Plate, colourless
V = 790.4 (3) Å30.35 × 0.18 × 0.03 mm

Data collection

Kuma KM-4 four-circle diffractometer3958 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
graphiteθmax = 30.2°, θmin = 1.7°
Profile data from ω/2θ scansh = 0→9
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008)k = −13→12
Tmin = 0.254, Tmax = 0.762l = −18→16
4862 measured reflections3 standard reflections every 200 reflections
4512 independent reflections intensity decay: 1.2%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.1029P)2] where P = (Fo2 + 2Fc2)/3
4512 reflections(Δ/σ)max = 0.002
253 parametersΔρmax = 5.63 e Å3
15 restraintsΔρmin = −3.77 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pb10.11555 (3)0.048890 (18)0.675973 (14)0.02300 (9)
O110.4666 (8)0.6974 (5)0.6607 (4)0.0360 (10)
O4−0.2317 (7)0.0086 (5)0.5150 (4)0.0309 (9)
O210.2153 (8)0.1496 (5)0.8788 (4)0.0387 (11)
O10.3206 (8)−0.1283 (6)0.7946 (4)0.0395 (11)
H110.430 (8)−0.075 (11)0.838 (5)0.047*
H120.347 (11)−0.155 (10)0.736 (4)0.047*
N120.1246 (8)0.2794 (5)0.5304 (4)0.0265 (9)
N110.0425 (8)0.2525 (5)0.4237 (4)0.0280 (10)
O220.0922 (10)0.3005 (6)0.7692 (4)0.0452 (13)
O120.4408 (7)0.7751 (4)0.4972 (4)0.0331 (9)
C170.4044 (8)0.6811 (6)0.5601 (5)0.0247 (10)
C140.2716 (7)0.5309 (5)0.5091 (4)0.0208 (9)
C130.2351 (9)0.4143 (6)0.5710 (5)0.0249 (10)
H130.29160.43170.64580.030*
C150.1807 (9)0.5029 (6)0.3995 (5)0.0273 (11)
H150.19400.57690.35320.033*
C160.0682 (10)0.3600 (7)0.3606 (5)0.0309 (12)
H160.00790.33890.28630.037*
C240.2220 (9)0.3860 (6)0.9548 (5)0.0273 (11)
C270.1684 (10)0.2701 (6)0.8588 (5)0.0297 (11)
O50.7080 (10)0.0331 (7)0.9439 (4)0.0471 (13)
H510.753 (16)0.123 (4)0.975 (6)0.057*
H520.682 (16)−0.024 (7)0.993 (5)0.057*
N210.3150 (10)0.6062 (7)1.1197 (5)0.0385 (13)
N220.2595 (11)0.6394 (6)1.0184 (6)0.0391 (13)
C250.2804 (11)0.3556 (7)1.0582 (5)0.0342 (13)
H230.29070.26061.07480.041*
C230.2131 (11)0.5332 (7)0.9376 (5)0.0325 (12)
H250.17310.55710.86670.039*
C260.3247 (13)0.4707 (9)1.1396 (6)0.0396 (15)
H260.36310.45031.21150.048*
O30.4919 (9)0.1749 (7)0.7070 (4)0.0449 (12)
O2−0.1694 (9)−0.0786 (7)0.7638 (5)0.0490 (14)
H41−0.277 (8)0.082 (6)0.533 (5)0.07 (3)*
H42−0.316 (12)−0.072 (6)0.521 (10)0.07 (3)*
H310.529 (18)0.231 (10)0.661 (6)0.07 (4)*
H320.557 (16)0.215 (11)0.771 (3)0.08 (4)*
H21−0.172 (17)−0.018 (9)0.815 (6)0.05 (3)*
H22−0.259 (10)−0.160 (6)0.740 (7)0.04 (2)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pb10.02442 (13)0.01967 (12)0.02294 (13)0.00112 (8)0.00730 (9)−0.00286 (7)
O110.040 (2)0.026 (2)0.032 (2)−0.0024 (18)0.0027 (19)−0.0031 (17)
O40.029 (2)0.0177 (18)0.044 (3)0.0019 (15)0.0105 (19)0.0037 (16)
O210.049 (3)0.029 (2)0.035 (2)0.010 (2)0.008 (2)−0.0061 (18)
O10.041 (3)0.039 (3)0.039 (3)0.012 (2)0.010 (2)−0.003 (2)
N120.031 (2)0.0161 (19)0.032 (2)0.0016 (17)0.012 (2)0.0006 (17)
N110.032 (2)0.0169 (19)0.032 (2)0.0005 (17)0.009 (2)−0.0032 (17)
O220.069 (4)0.039 (3)0.025 (2)0.016 (3)0.007 (2)−0.0038 (19)
O120.036 (2)0.0166 (17)0.046 (3)−0.0025 (16)0.016 (2)0.0023 (16)
C170.022 (2)0.015 (2)0.036 (3)0.0028 (17)0.009 (2)−0.0044 (18)
C140.019 (2)0.0133 (19)0.031 (3)0.0033 (16)0.0100 (19)−0.0011 (17)
C130.025 (2)0.020 (2)0.028 (3)0.0035 (19)0.006 (2)0.0020 (19)
C150.030 (3)0.019 (2)0.033 (3)0.003 (2)0.010 (2)0.006 (2)
C160.032 (3)0.024 (3)0.030 (3)0.000 (2)0.003 (2)−0.002 (2)
C240.032 (3)0.023 (2)0.026 (3)0.005 (2)0.007 (2)−0.0055 (19)
C270.038 (3)0.024 (2)0.027 (3)0.004 (2)0.011 (2)−0.006 (2)
O50.064 (4)0.042 (3)0.039 (3)0.016 (3)0.017 (3)0.001 (2)
N210.040 (3)0.037 (3)0.034 (3)0.004 (2)0.009 (2)−0.013 (2)
N220.048 (3)0.025 (2)0.042 (3)0.009 (2)0.010 (3)−0.005 (2)
C250.048 (4)0.031 (3)0.025 (3)0.013 (3)0.012 (3)0.001 (2)
C230.044 (3)0.028 (3)0.027 (3)0.013 (2)0.009 (2)0.003 (2)
C260.052 (4)0.042 (4)0.024 (3)0.010 (3)0.009 (3)−0.006 (2)
O30.043 (3)0.051 (3)0.025 (2)−0.016 (2)0.008 (2)−0.007 (2)
O20.045 (3)0.053 (3)0.042 (3)−0.012 (2)0.023 (2)−0.011 (2)

Geometric parameters (Å, °)

Pb1—O32.578 (6)C13—H130.9300
Pb1—O212.593 (5)C15—C161.386 (8)
Pb1—O22.638 (6)C15—H150.9300
Pb1—O222.647 (5)C16—H160.9300
Pb1—O12.688 (6)C24—C251.343 (9)
Pb1—O42.707 (5)C24—C231.406 (8)
O11—C171.242 (8)C24—C271.517 (8)
O4—H410.86 (2)O5—H510.86 (2)
O4—H420.87 (2)O5—H520.87 (2)
O21—C271.254 (8)N21—C261.308 (10)
O1—H110.86 (2)N21—N221.324 (10)
O1—H120.86 (2)N22—C231.328 (8)
N12—C131.327 (7)C25—C261.390 (9)
N12—N111.331 (7)C25—H230.9300
N11—C161.320 (8)C23—H250.9300
O22—C271.208 (8)C26—H260.9300
O12—C171.241 (7)O3—H310.86 (2)
C17—C141.514 (7)O3—H320.86 (2)
C14—C151.373 (8)O2—H210.86 (2)
C14—C131.385 (7)O2—H220.86 (2)
O3—Pb1—O2179.05 (17)N12—C13—H13118.0
O3—Pb1—O2146.72 (18)C14—C13—H13118.0
O21—Pb1—O270.88 (18)C14—C15—C16117.4 (5)
O3—Pb1—O2285.5 (2)C14—C15—H15121.3
O21—Pb1—O2249.16 (16)C16—C15—H15121.3
O2—Pb1—O2285.5 (2)N11—C16—C15123.2 (6)
O3—Pb1—O174.2 (2)N11—C16—H16118.4
O21—Pb1—O171.28 (16)C15—C16—H16118.4
O2—Pb1—O182.8 (2)C25—C24—C23117.0 (5)
O22—Pb1—O1119.77 (16)C25—C24—C27123.0 (6)
O3—Pb1—O4137.65 (16)C23—C24—C27120.1 (6)
O21—Pb1—O4132.46 (16)O22—C27—O21124.6 (6)
O2—Pb1—O475.25 (18)O22—C27—C24119.1 (6)
O22—Pb1—O496.49 (16)O21—C27—C24116.3 (6)
O1—Pb1—O4135.76 (15)H51—O5—H52107 (3)
Pb1—O4—H41100.9 (17)C26—N21—N22120.3 (6)
Pb1—O4—H42110 (8)N21—N22—C23119.1 (6)
H41—O4—H42107 (3)C24—C25—C26117.9 (6)
C27—O21—Pb193.8 (4)C24—C25—H23121.1
Pb1—O1—H11110 (8)C26—C25—H23121.1
Pb1—O1—H1287 (7)N22—C23—C24122.7 (6)
H11—O1—H12109 (3)N22—C23—H25118.7
C13—N12—N11118.9 (5)C24—C23—H25118.7
C16—N11—N12119.9 (5)N21—C26—C25123.0 (7)
C27—O22—Pb192.3 (4)N21—C26—H26118.5
O12—C17—O11126.7 (5)C25—C26—H26118.5
O12—C17—C14116.7 (5)Pb1—O3—H31120 (8)
O11—C17—C14116.6 (5)Pb1—O3—H32117 (8)
C15—C14—C13116.5 (5)H31—O3—H32109 (4)
C15—C14—C17122.0 (5)Pb1—O2—H21108 (7)
C13—C14—C17121.5 (5)Pb1—O2—H22127 (6)
N12—C13—C14124.0 (5)H21—O2—H22124 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H41···O12i0.86 (2)1.93 (2)2.736 (6)154 (4)
O4—H42···O12ii0.87 (2)1.92 (4)2.754 (6)161 (11)
O1—H11···O50.86 (2)2.08 (3)2.943 (9)174 (10)
O1—H12···O11iii0.86 (2)2.09 (6)2.849 (7)146 (9)
O5—H51···N22iv0.86 (2)2.23 (5)3.013 (8)151 (9)
O5—H52···O21v0.87 (2)2.12 (6)2.897 (8)149 (10)
O3—H31···O12vi0.86 (2)2.09 (7)2.819 (7)142 (10)
O3—H32···N21iv0.86 (2)2.01 (6)2.794 (7)151 (10)
O2—H21···O5vii0.86 (2)2.13 (5)2.906 (8)150 (9)
O2—H22···O11ii0.86 (2)2.07 (4)2.891 (7)159 (9)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y−1, z; (iii) x, y−1, z; (iv) −x+1, −y+1, −z+2; (v) −x+1, −y, −z+2; (vi) −x+1, −y+1, −z+1; (vii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2128).

References

  • Kuma (1996). KM-4 Software Kuma Diffraction Ltd, Wrocław, Poland.
  • Kuma (2001). DATAPROC Kuma Diffraction Ltd, Wrocław, Poland.
  • Leciejewicz, J. & Starosta, W. (2009). Acta Cryst. E65, m94. [PMC free article] [PubMed]
  • Oxford Diffraction (2008). CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Starosta, W. & Leciejewicz, J. (2007). Acta Cryst. E63, m1662–m1663.
  • Starosta, W. & Leciejewicz, J. (2008). Acta Cryst. E64, o461. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography