PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2794.
Published online 2009 October 17. doi:  10.1107/S1600536809041580
PMCID: PMC2971408

c-3,t-3-Dimethyl-r-2,c-6-diphenyl­piperidin-4-one

Abstract

In the title compound, C19H21NO, the piperidine ring adopts a chair conformation. The two phenyl rings attached to the piperidine ring at 2 and 6 positions occupy equatorial orientations and the dihedral angle between them is 57.53 (11)°. In the crystal, the mol­ecules are connected via weak inter­molecular C—H(...)π inter­actions, leading to a zigzag chains.

Related literature

For general background to piperidine derivatives, see: Badorrey et al. (1999 [triangle]); Nalanishi et al. (1974 [triangle]); Elena et al. (2002 [triangle]). For hybridization, see: Beddoes et al. (1986 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For ring conformational analysis, see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]). For the synthesis of the title compound, see Noller & Baliah (1948 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2794-scheme1.jpg

Experimental

Crystal data

  • C19H21NO
  • M r = 279.37
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2794-efi1.jpg
  • a = 6.0293 (4) Å
  • b = 10.8198 (6) Å
  • c = 12.1649 (6) Å
  • α = 98.559 (2)°
  • β = 92.836 (3)°
  • γ = 96.677 (3)°
  • V = 777.62 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.18 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.986, T max = 0.987
  • 15310 measured reflections
  • 3556 independent reflections
  • 1930 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.168
  • S = 1.06
  • 3556 reflections
  • 197 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041580/bt5058sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041580/bt5058Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.

supplementary crystallographic information

Comment

Various piperidine derivatives are present in numerous alkaloids (Badorrey et al., 1999). Piperidines have been found to exhibit blood cholesterol-lowering activities (Nalanishi et al., 1974). Trans-platinum piperidine derivatives deserve evaluation of their efficacy in tumor-bearing animals (Elena et al., 2002). In view of these importance, the crystal structure of the title compound has been carrried out.

The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts chair conformation and the ring-puckering parameters (Cremer & Pople, 1975) are: q2 = 0.1578 (20)Å, q3 = -0.5364 (21)Å, and [var phi] = 176.7 (8)°, and the smallest asymmetry parameter Δs(N1)=Δs(C4) = 1.97 (16)° (Nardelli, 1983). The two phenyl rings attached to the piperidine ring at 2,6- positions occupy equatorial orientation [C7-C2-C3-C4 = -174.77 (16)°; C4-C5-C6-C15 = 175.09 (16)°], respectively and the dihedral angle between them is 57.52 (11)°. The methyl groups attached at position 3 of the piperidine ring takes up syn-periplanar [C13-C3-C4-O1 = -22.3 (3)°] and anti-clinical [C14-C3-C4-O1 = 97.1 (2)°] orientations. The sum of the bond angles at N1[329.62 (5)°] of the piperidine ring is in accordance with sp3 hybridization (Beddoes et al., 1986).

The molecules are connected via intermolecular C–H···π interactions (Table 1) which lead to a zig–zag chain running along b – axis in addition to van der Waals forces (Fig. 2).

Experimental

The procedure reported by Noller and Baliah was followed for the preparation of this compound (Noller & Baliah, 1948). Benzaldehyde (21ml), 3-methyl-2-butanone (10ml) and ammonium acetate (8gm) were dissolved in distilled ethanol (50ml) and heated over boiling water bath with shaking, until an yellow colour developed and changed into orange. The solution was left undisturbed for 14 hours. The solid thrown out was filtered, purified and recrystallized from ethanol.

Refinement

The H atom bonded to N was freely refined. H atoms bonded to C were positioned geometrically (C-H = 0.93 - 0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. The components of the anisotropic displacement parameters of C18 and C19 in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.001.

Figures

Fig. 1.
The ORTEP plot of the molecule with 30% probability displacement ellipsoids.
Fig. 2.
The crystal packing of the molecules viewed along b - axis.

Crystal data

C19H21NOZ = 2
Mr = 279.37F(000) = 300
Triclinic, P1Dx = 1.193 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0293 (4) ÅCell parameters from 3556 reflections
b = 10.8198 (6) Åθ = 1.7–28.2°
c = 12.1649 (6) ŵ = 0.07 mm1
α = 98.559 (2)°T = 293 K
β = 92.836 (3)°Block, colourless
γ = 96.677 (3)°0.20 × 0.20 × 0.18 mm
V = 777.62 (8) Å3

Data collection

Bruker Kappa APEXII area-detector diffractometer3556 independent reflections
Radiation source: fine-focus sealed tube1930 reflections with I > 2σ(I)
graphiteRint = 0.036
ω and [var phi] scansθmax = 28.2°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −8→7
Tmin = 0.986, Tmax = 0.987k = −14→13
15310 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.168w = 1/[σ2(Fo2) + (0.0729P)2 + 0.1205P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.014
3556 reflectionsΔρmax = 0.18 e Å3
197 parametersΔρmin = −0.19 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C20.1988 (3)0.24655 (18)0.32290 (15)0.0425 (5)
H20.04000.24030.33790.051*
C30.3320 (3)0.22876 (19)0.43103 (15)0.0468 (5)
C40.2694 (3)0.0952 (2)0.45372 (16)0.0493 (5)
C50.2448 (4)−0.00903 (19)0.35615 (16)0.0524 (6)
H5A0.1674−0.08450.37780.063*
H5B0.3923−0.02710.33530.063*
C60.1161 (3)0.02397 (18)0.25591 (15)0.0442 (5)
H6−0.03760.03360.27500.053*
C70.2596 (3)0.37123 (18)0.28453 (15)0.0455 (5)
C80.1269 (4)0.4668 (2)0.30562 (18)0.0588 (6)
H80.00300.45480.34720.071*
C90.1733 (5)0.5791 (2)0.2668 (2)0.0723 (7)
H90.08180.64210.28250.087*
C100.3532 (5)0.5982 (2)0.2053 (2)0.0750 (8)
H100.38360.67380.17810.090*
C110.4897 (5)0.5055 (2)0.18330 (19)0.0704 (7)
H110.61380.51870.14210.084*
C120.4420 (4)0.3928 (2)0.22252 (17)0.0551 (6)
H120.53440.33010.20690.066*
C130.2732 (5)0.3230 (2)0.52803 (18)0.0740 (8)
H13A0.11520.30970.53670.111*
H13B0.31390.40720.51330.111*
H13C0.35350.31170.59520.111*
C140.5846 (4)0.2435 (2)0.41959 (19)0.0644 (7)
H14A0.65880.22070.48390.097*
H14B0.63610.32940.41370.097*
H14C0.61760.18950.35400.097*
C150.1096 (4)−0.07639 (18)0.15558 (16)0.0460 (5)
C160.2873 (4)−0.0837 (2)0.08964 (18)0.0605 (6)
H160.4134−0.02430.10610.073*
C170.2818 (5)−0.1775 (2)−0.0003 (2)0.0728 (7)
H170.4041−0.1810−0.04380.087*
C180.0987 (5)−0.2653 (2)−0.0261 (2)0.0726 (7)
H180.0952−0.3285−0.08720.087*
C19−0.0791 (5)−0.2598 (2)0.0383 (2)0.0732 (7)
H19−0.2041−0.31990.02140.088*
C20−0.0753 (4)−0.1654 (2)0.12890 (19)0.0620 (6)
H20−0.1982−0.16210.17200.074*
N10.2245 (3)0.14438 (15)0.23353 (13)0.0435 (4)
O10.2492 (3)0.07213 (16)0.54724 (12)0.0687 (5)
H10.168 (4)0.1575 (19)0.1717 (19)0.058 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C20.0418 (11)0.0477 (12)0.0367 (10)0.0071 (9)0.0038 (8)0.0012 (8)
C30.0453 (12)0.0570 (13)0.0363 (10)0.0018 (9)0.0019 (8)0.0053 (9)
C40.0431 (12)0.0697 (15)0.0359 (11)0.0030 (10)0.0002 (8)0.0143 (10)
C50.0626 (14)0.0528 (13)0.0438 (11)0.0061 (10)0.0021 (10)0.0155 (10)
C60.0457 (12)0.0475 (12)0.0408 (10)0.0046 (9)0.0043 (8)0.0118 (9)
C70.0534 (13)0.0460 (12)0.0343 (10)0.0066 (9)−0.0041 (8)−0.0013 (8)
C80.0655 (16)0.0525 (14)0.0571 (13)0.0139 (11)−0.0024 (11)0.0016 (11)
C90.093 (2)0.0524 (15)0.0708 (16)0.0209 (13)−0.0092 (15)0.0045 (12)
C100.113 (2)0.0494 (15)0.0612 (15)0.0044 (15)−0.0152 (15)0.0155 (12)
C110.094 (2)0.0629 (16)0.0531 (14)−0.0037 (14)0.0060 (12)0.0151 (12)
C120.0680 (15)0.0488 (13)0.0489 (12)0.0079 (11)0.0092 (10)0.0065 (10)
C130.096 (2)0.0789 (17)0.0410 (12)0.0077 (14)−0.0001 (12)−0.0051 (12)
C140.0462 (14)0.0788 (17)0.0677 (15)−0.0021 (12)−0.0080 (10)0.0215 (13)
C150.0554 (13)0.0428 (11)0.0402 (10)0.0039 (9)−0.0023 (9)0.0113 (9)
C160.0711 (16)0.0504 (13)0.0572 (14)0.0011 (11)0.0117 (12)0.0015 (11)
C170.096 (2)0.0644 (16)0.0565 (14)0.0135 (14)0.0155 (13)−0.0003 (12)
C180.110 (2)0.0549 (14)0.0486 (14)0.0124 (15)−0.0144 (11)0.0005 (11)
C190.0874 (18)0.0583 (15)0.0652 (15)−0.0101 (13)−0.0227 (10)0.0058 (12)
C200.0625 (15)0.0627 (15)0.0569 (14)−0.0055 (12)−0.0061 (11)0.0103 (11)
N10.0562 (11)0.0423 (10)0.0321 (9)0.0055 (8)0.0016 (7)0.0071 (7)
O10.0743 (11)0.0921 (12)0.0396 (8)−0.0042 (9)0.0012 (7)0.0223 (8)

Geometric parameters (Å, °)

C2—N11.458 (2)C10—H100.9300
C2—C71.504 (3)C11—C121.380 (3)
C2—C31.555 (3)C11—H110.9300
C2—H20.9800C12—H120.9300
C3—C41.520 (3)C13—H13A0.9600
C3—C131.525 (3)C13—H13B0.9600
C3—C141.528 (3)C13—H13C0.9600
C4—O11.209 (2)C14—H14A0.9600
C4—C51.499 (3)C14—H14B0.9600
C5—C61.522 (3)C14—H14C0.9600
C5—H5A0.9700C15—C161.372 (3)
C5—H5B0.9700C15—C201.377 (3)
C6—N11.457 (2)C16—C171.372 (3)
C6—C151.504 (3)C16—H160.9300
C6—H60.9800C17—C181.362 (4)
C7—C121.381 (3)C17—H170.9300
C7—C81.382 (3)C18—C191.360 (4)
C8—C91.371 (3)C18—H180.9300
C8—H80.9300C19—C201.383 (3)
C9—C101.361 (4)C19—H190.9300
C9—H90.9300C20—H200.9300
C10—C111.374 (4)N1—H10.85 (2)
N1—C2—C7109.70 (15)C10—C11—C12119.8 (2)
N1—C2—C3109.78 (16)C10—C11—H11120.1
C7—C2—C3114.76 (15)C12—C11—H11120.1
N1—C2—H2107.4C11—C12—C7121.2 (2)
C7—C2—H2107.4C11—C12—H12119.4
C3—C2—H2107.4C7—C12—H12119.4
C4—C3—C13109.95 (17)C3—C13—H13A109.5
C4—C3—C14106.01 (17)C3—C13—H13B109.5
C13—C3—C14110.43 (18)H13A—C13—H13B109.5
C4—C3—C2108.99 (15)C3—C13—H13C109.5
C13—C3—C2109.16 (18)H13A—C13—H13C109.5
C14—C3—C2112.25 (16)H13B—C13—H13C109.5
O1—C4—C5120.6 (2)C3—C14—H14A109.5
O1—C4—C3121.75 (19)C3—C14—H14B109.5
C5—C4—C3117.57 (16)H14A—C14—H14B109.5
C4—C5—C6112.35 (17)C3—C14—H14C109.5
C4—C5—H5A109.1H14A—C14—H14C109.5
C6—C5—H5A109.1H14B—C14—H14C109.5
C4—C5—H5B109.1C16—C15—C20118.2 (2)
C6—C5—H5B109.1C16—C15—C6121.47 (18)
H5A—C5—H5B107.9C20—C15—C6120.3 (2)
N1—C6—C15111.07 (15)C17—C16—C15121.0 (2)
N1—C6—C5107.32 (16)C17—C16—H16119.5
C15—C6—C5111.89 (17)C15—C16—H16119.5
N1—C6—H6108.8C18—C17—C16120.4 (2)
C15—C6—H6108.8C18—C17—H17119.8
C5—C6—H6108.8C16—C17—H17119.8
C12—C7—C8117.4 (2)C17—C18—C19119.4 (2)
C12—C7—C2121.77 (19)C17—C18—H18120.3
C8—C7—C2120.70 (19)C19—C18—H18120.3
C9—C8—C7121.6 (2)C18—C19—C20120.5 (2)
C9—C8—H8119.2C18—C19—H19119.8
C7—C8—H8119.2C20—C19—H19119.8
C10—C9—C8120.0 (3)C15—C20—C19120.4 (2)
C10—C9—H9120.0C15—C20—H20119.8
C8—C9—H9120.0C19—C20—H20119.8
C9—C10—C11119.9 (2)C6—N1—C2111.51 (15)
C9—C10—H10120.0C6—N1—H1107.9 (14)
C11—C10—H10120.0C2—N1—H1111.3 (15)
N1—C2—C3—C4−50.7 (2)C7—C8—C9—C100.4 (4)
C7—C2—C3—C4−174.77 (16)C8—C9—C10—C11−0.8 (4)
N1—C2—C3—C13−170.78 (17)C9—C10—C11—C120.8 (4)
C7—C2—C3—C1365.1 (2)C10—C11—C12—C7−0.5 (3)
N1—C2—C3—C1466.4 (2)C8—C7—C12—C110.0 (3)
C7—C2—C3—C14−57.6 (2)C2—C7—C12—C11176.84 (19)
C13—C3—C4—O1−22.3 (3)N1—C6—C15—C1639.6 (3)
C14—C3—C4—O197.1 (2)C5—C6—C15—C16−80.3 (2)
C2—C3—C4—O1−141.9 (2)N1—C6—C15—C20−141.7 (2)
C13—C3—C4—C5160.91 (19)C5—C6—C15—C2098.4 (2)
C14—C3—C4—C5−79.7 (2)C20—C15—C16—C17−0.3 (3)
C2—C3—C4—C541.3 (2)C6—C15—C16—C17178.5 (2)
O1—C4—C5—C6139.4 (2)C15—C16—C17—C180.2 (4)
C3—C4—C5—C6−43.7 (2)C16—C17—C18—C19−0.3 (4)
C4—C5—C6—N153.0 (2)C17—C18—C19—C200.5 (4)
C4—C5—C6—C15175.09 (16)C16—C15—C20—C190.5 (3)
N1—C2—C7—C12−41.6 (2)C6—C15—C20—C19−178.3 (2)
C3—C2—C7—C1282.6 (2)C18—C19—C20—C15−0.6 (4)
N1—C2—C7—C8135.14 (19)C15—C6—N1—C2170.45 (16)
C3—C2—C7—C8−100.7 (2)C5—C6—N1—C2−67.0 (2)
C12—C7—C8—C90.0 (3)C7—C2—N1—C6−165.75 (16)
C2—C7—C8—C9−176.82 (19)C3—C2—N1—C667.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10···Cg3i0.932.953.648133

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5058).

References

  • Badorrey, R., Cativiela, C., Diaz-de-Villegas, M. D. & Galvez, J. A. (1999). Tetrahedron, 55, 7601–7612.
  • Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Elena, K., Yechezkel, B., Dan, G. & Yousef, N. (2002). J. Med. Chem.45, 5196–5204. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Jpn Patent 74-03987.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Noller, C. & Baliah, V. (1948). J. Am. Chem. Soc.70, 3853–3855. [PubMed]
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography