PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1425.
Published online 2009 October 23. doi:  10.1107/S1600536809042998
PMCID: PMC2971407

Poly[[triaqua(butane-1,2,3,4-tetra­carboxyl­ato)dimanganese(II)] mono­hydrate]

Abstract

The asymmetric unit of the title MnII coordination polymer, {[Mn2(C8H6O8)(H2O)3]·H2O}n, contains two crystallographic­ally independent MnII cations, two half butane-1,2,3,4-tetra­carboxyl­ato anions, each lying on a centre of inversion, and four water mol­ecules. The MnII cation has a distorted octa­hedral coordination environment. One Mn centre is coordinated by four carboxyl­ate O atoms from two different anions and two water O atoms. The other Mn centre is coordinated by five carboxyl­ate O atoms from four different anions and one water O atom. One water mol­ecule does not coordinate to a Mn centre. The crystal packing is stabilized by several O—H(...)O hydrogen bonds, forming a three-dimensional framework.

Related literature

For multicarboxyl­ate ligands in the construction of coordin­ation polymers, see: Yang et al. (2008 [triangle]). For butane-1,2,3,4-tetracarboxylic acid in coordination chemistry, see: Liu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1425-scheme1.jpg

Experimental

Crystal data

  • [Mn2(C8H6O8)(H2O)3]·H2O
  • M r = 824.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1425-efi1.jpg
  • a = 8.1962 (4) Å
  • b = 12.3291 (7) Å
  • c = 12.9758 (6) Å
  • β = 97.760 (5)°
  • V = 1299.22 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.01 mm−1
  • T = 293 K
  • 0.33 × 0.21 × 0.17 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.764, T max = 0.852
  • 7085 measured reflections
  • 3031 independent reflections
  • 1990 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.106
  • S = 0.88
  • 3031 reflections
  • 227 parameters
  • 12 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.83 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809042998/bt5105sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042998/bt5105Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks Jilin Agriculture Engineering Polytechnic College for support.

supplementary crystallographic information

Comment

So far, the multicarboxylate ligands, such as 1,2,3-benzenedicarboxylic acid, 1,2,4-benzenedicarboxylic acid and 1,3,5-benzenedicarboxylic acid, are widely used to construct the coordination polymers with interesting properties (Yang et al. 2008). In this regard, butane-1,2,3,4-tetracarboxylatic acid (H4L) is also a good ligand in coordination chemistry due to its strong coordination ability and versatile coordination modes, so much attention has been paid to it in recent years (Liu et al. 2008). In this contribution, H4L was selected as a bridging ligand, and a new manganese coordination polymer, namely [Mn2(L)(H2O)3].H2O (I).

As shown in Fig. 1, the asymmetric unit of (I) contains two crystallographically MnII cation, two half L anions and four water molecules. The L ligand ligand is at an inversion center. Each MnII cation has a distorted octahedral coordination environment. Mn1 is coordinated by four carboxylate O atoms from two different L anions and two water O atoms. Mn2 is coordinated by five carboxylate O atoms from three different L anions and one water O atom. The L ligands bridging the neighboring MnII centers to form a complicated three-dimensional framework structure of (I) (Fig. 2). The hydrogen-bonding interactions between the water molecules and the carboxylate O atoms further stabilize the three-dimensional framework structure of (I).

Experimental

A mixture of Mn(NO3)2.6H2O (0.10 mmol), H4L (0.05 mmol) and water (12 ml) was sealed in a Teflon reactor (15 ml), which was heated at 140 °C for 3 days and then gradually cooled to room temperature. Purple crystals of (I) were isolated (yield 64% based on Mn).

Refinement

H atoms bonded to C atom were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier). The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H = 0.85±0.01 Å and H···H = 1.35±0.01 Å; their temperature factors were tied to those of parent atoms by a factor of 1.5.

Figures

Fig. 1.
A view of the local coordination of the MnII cations in (I), showing the atom-numbering scheme. Displacement ellipsoids at the 30% probability level (symmetry operations i: 2.5-x, y-0.5, 1.5-z; ii: x-0.5, 1.5-y, z-0.5; iii: 1.5-x, y+0.5, 1.5-z; iv: 2-x, ...

Crystal data

[Mn2(C8H6O8)(H2O)3]·H2OF(000) = 832
Mr = 824.14Dx = 2.107 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3031 reflections
a = 8.1962 (4) Åθ = 3.0–29.1°
b = 12.3291 (7) ŵ = 2.01 mm1
c = 12.9758 (6) ÅT = 293 K
β = 97.760 (5)°Block, colorless
V = 1299.22 (11) Å30.33 × 0.21 × 0.17 mm
Z = 2

Data collection

Bruker APEX CCD area-detector diffractometer3031 independent reflections
Radiation source: fine-focus sealed tube1990 reflections with I > 2σ(I)
graphiteRint = 0.040
ω scansθmax = 29.1°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→7
Tmin = 0.764, Tmax = 0.852k = −12→15
7085 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.88w = 1/[σ2(Fo2) + (0.0651P)2] where P = (Fo2 + 2Fc2)/3
3031 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.63 e Å3
12 restraintsΔρmin = −0.83 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.1879 (4)0.8429 (3)0.8558 (3)0.0198 (8)
C21.0480 (4)0.8783 (3)0.9135 (3)0.0271 (9)
H2A1.02410.81970.95900.033*
H2B0.95070.88930.86300.033*
C31.0781 (4)0.9804 (3)0.9778 (3)0.0205 (7)
H31.11091.03780.93250.025*
C41.2178 (4)0.9664 (3)1.0691 (3)0.0193 (8)
C50.9481 (4)0.5441 (3)0.8594 (3)0.0193 (8)
C60.9556 (4)0.4695 (3)0.9522 (2)0.0220 (8)
H61.02030.40520.93950.026*
C70.7837 (5)0.4336 (3)0.9692 (3)0.0306 (9)
H7A0.79150.39391.03430.037*
H7B0.71720.49760.97600.037*
C80.6978 (5)0.3639 (3)0.8845 (3)0.0275 (9)
O11.0249 (3)0.5178 (2)0.78555 (18)0.0248 (6)
O20.8740 (3)0.6329 (2)0.85773 (19)0.0263 (6)
O1W1.0570 (4)0.2456 (3)0.8215 (3)0.0391 (8)
O31.1646 (3)0.7613 (2)0.7983 (2)0.0287 (6)
O2W0.9047 (4)0.2290 (3)0.5915 (3)0.0425 (8)
HW220.969 (4)0.181 (3)0.575 (4)0.064*
O41.3228 (3)0.8944 (2)0.87012 (19)0.0253 (6)
O3W1.1264 (4)0.6245 (3)0.6096 (2)0.0357 (7)
HW311.129 (6)0.5569 (10)0.597 (3)0.054*
O50.7513 (3)0.3496 (2)0.7980 (2)0.0317 (7)
O4W1.0955 (15)0.0359 (7)0.6785 (11)0.192 (4)
HW411.181 (13)0.011 (12)0.654 (14)0.288*
HW421.06 (2)−0.021 (8)0.705 (14)0.288*
O60.5696 (4)0.3186 (3)0.9039 (3)0.0458 (9)
O71.2229 (3)0.8806 (2)1.12238 (19)0.0268 (6)
O81.3177 (3)1.0437 (2)1.08580 (19)0.0253 (6)
Mn10.96260 (7)0.36380 (5)0.70273 (4)0.02057 (16)
Mn20.95382 (6)0.68692 (4)0.70684 (4)0.01775 (15)
HW110.979 (4)0.205 (3)0.835 (4)0.064 (18)*
HW121.129 (4)0.203 (3)0.802 (4)0.065 (18)*
HW210.812 (2)0.198 (3)0.592 (4)0.041 (14)*
HW321.102 (6)0.654 (3)0.5505 (18)0.063 (18)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0179 (17)0.025 (2)0.0152 (16)0.0031 (16)−0.0039 (14)0.0026 (15)
C20.0181 (18)0.032 (2)0.0288 (19)0.0020 (17)−0.0043 (16)−0.0103 (17)
C30.0188 (17)0.0238 (19)0.0173 (16)0.0020 (16)−0.0032 (14)−0.0006 (15)
C40.0162 (16)0.023 (2)0.0180 (16)0.0050 (16)−0.0016 (14)−0.0002 (16)
C50.0191 (17)0.021 (2)0.0153 (16)−0.0061 (16)−0.0080 (14)−0.0003 (14)
C60.0279 (18)0.0190 (19)0.0169 (16)−0.0047 (17)−0.0054 (15)−0.0017 (15)
C70.035 (2)0.030 (2)0.0261 (19)−0.010 (2)−0.0026 (17)0.0011 (18)
C80.026 (2)0.017 (2)0.036 (2)0.0032 (17)−0.0059 (18)−0.0048 (17)
O10.0317 (14)0.0231 (14)0.0188 (12)−0.0017 (12)0.0005 (11)−0.0016 (11)
O20.0284 (14)0.0264 (16)0.0232 (13)0.0014 (12)0.0005 (11)0.0024 (12)
O1W0.0288 (16)0.0375 (19)0.0508 (19)0.0121 (16)0.0045 (15)0.0166 (16)
O30.0197 (13)0.0327 (16)0.0328 (14)−0.0037 (12)0.0006 (11)−0.0140 (13)
O2W0.0367 (17)0.0322 (18)0.061 (2)−0.0119 (15)0.0148 (16)−0.0229 (16)
O40.0191 (12)0.0246 (15)0.0323 (14)−0.0045 (11)0.0040 (11)−0.0093 (12)
O3W0.0359 (17)0.0418 (19)0.0312 (16)−0.0032 (15)0.0116 (14)−0.0101 (14)
O50.0291 (15)0.0325 (17)0.0296 (15)0.0015 (13)−0.0098 (12)−0.0031 (13)
O4W0.179 (9)0.162 (8)0.243 (11)0.014 (6)0.060 (8)0.014 (8)
O60.0260 (15)0.047 (2)0.065 (2)−0.0131 (15)0.0074 (15)−0.0301 (17)
O70.0205 (12)0.0259 (16)0.0313 (14)0.0006 (11)−0.0070 (11)0.0080 (12)
O80.0227 (13)0.0288 (16)0.0226 (12)−0.0054 (12)−0.0035 (10)0.0006 (11)
Mn10.0198 (3)0.0200 (3)0.0207 (3)−0.0005 (2)−0.0016 (2)0.0007 (2)
Mn20.0165 (3)0.0188 (3)0.0166 (3)0.0002 (2)−0.0029 (2)0.0014 (2)

Geometric parameters (Å, °)

C1—O31.252 (4)O1—Mn22.360 (3)
C1—O41.267 (4)O2—Mn22.247 (2)
C1—C21.515 (5)O1W—Mn12.185 (3)
C2—C31.512 (5)O1W—HW110.850 (10)
C2—H2A0.9700O1W—HW120.854 (10)
C2—H2B0.9700O3—Mn22.163 (3)
C3—C41.542 (5)O2W—Mn12.211 (3)
C3—C3i1.549 (7)O2W—HW220.843 (10)
C3—H30.9800O2W—HW210.845 (10)
C4—O81.257 (4)O4—Mn1iii2.140 (2)
C4—O71.262 (4)O3W—Mn22.160 (3)
C5—O21.251 (4)O3W—HW310.850 (10)
C5—O11.258 (4)O3W—HW320.849 (10)
C5—C61.510 (5)O5—Mn12.267 (3)
C6—C71.521 (5)O4W—HW410.86 (12)
C6—C6ii1.546 (7)O4W—HW420.85 (13)
C6—H60.9800O6—Mn2iv2.160 (3)
C7—C81.494 (6)O7—Mn2v2.217 (3)
C7—H7A0.9700O8—Mn1v2.127 (3)
C7—H7B0.9700Mn1—O8vi2.127 (3)
C8—O61.245 (5)Mn1—O4vii2.140 (2)
C8—O51.271 (5)Mn2—O6viii2.160 (3)
O1—Mn12.207 (3)Mn2—O7vi2.217 (3)
O3—C1—O4123.3 (3)C1—O3—Mn2135.5 (2)
O3—C1—C2117.5 (3)Mn1—O2W—HW22128 (3)
O4—C1—C2119.2 (3)Mn1—O2W—HW21116 (3)
C1—C2—C3115.7 (3)HW22—O2W—HW21106.4 (17)
C1—C2—H2A108.3C1—O4—Mn1iii126.9 (2)
C3—C2—H2A108.3Mn2—O3W—HW31120 (3)
C1—C2—H2B108.3Mn2—O3W—HW32106 (3)
C3—C2—H2B108.3HW31—O3W—HW32104.9 (16)
H2A—C2—H2B107.4C8—O5—Mn1148.3 (3)
C2—C3—C4112.3 (3)HW41—O4W—HW42101 (13)
C2—C3—C3i112.5 (4)C8—O6—Mn2iv101.8 (2)
C4—C3—C3i108.3 (3)C4—O7—Mn2v123.3 (2)
C2—C3—H3107.8C4—O8—Mn1v144.9 (2)
C4—C3—H3107.8O8vi—Mn1—O4vii90.20 (9)
C3i—C3—H3107.8O8vi—Mn1—O1W166.12 (11)
O8—C4—O7124.7 (3)O4vii—Mn1—O1W101.26 (10)
O8—C4—C3116.5 (3)O8vi—Mn1—O187.51 (10)
O7—C4—C3118.8 (3)O4vii—Mn1—O185.02 (10)
O2—C5—O1120.3 (3)O1W—Mn1—O1101.15 (11)
O2—C5—C6120.9 (3)O8vi—Mn1—O2W83.53 (12)
O1—C5—C6118.7 (3)O4vii—Mn1—O2W87.77 (11)
C5—C6—C7110.8 (3)O1W—Mn1—O2W89.06 (14)
C5—C6—C6ii107.9 (4)O1—Mn1—O2W168.48 (11)
C7—C6—C6ii111.8 (4)O8vi—Mn1—O592.08 (10)
C5—C6—H6108.8O4vii—Mn1—O5171.42 (10)
C7—C6—H6108.8O1W—Mn1—O577.75 (11)
C6ii—C6—H6108.8O1—Mn1—O586.81 (9)
C8—C7—C6114.5 (3)O2W—Mn1—O5100.70 (11)
C8—C7—H7A108.6O3W—Mn2—O6viii83.43 (13)
C6—C7—H7A108.6O3W—Mn2—O386.20 (11)
C8—C7—H7B108.6O6viii—Mn2—O392.23 (12)
C6—C7—H7B108.6O3W—Mn2—O7vi99.22 (11)
H7A—C7—H7B107.6O6viii—Mn2—O7vi87.70 (12)
O6—C8—O5121.2 (4)O3—Mn2—O7vi174.53 (10)
O6—C8—C7115.8 (3)O3W—Mn2—O2133.95 (12)
O5—C8—C7123.0 (4)O6viii—Mn2—O2142.39 (11)
C5—O1—Mn1119.0 (2)O3—Mn2—O287.30 (10)
C5—O1—Mn289.0 (2)O7vi—Mn2—O289.42 (10)
Mn1—O1—Mn2121.45 (11)O3W—Mn2—O178.19 (11)
C5—O2—Mn294.4 (2)O6viii—Mn2—O1161.24 (11)
Mn1—O1W—HW11110 (3)O3—Mn2—O190.28 (10)
Mn1—O1W—HW12114 (4)O7vi—Mn2—O191.54 (10)
HW11—O1W—HW12104.7 (16)O2—Mn2—O156.30 (9)

Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+2, −y+1, −z+2; (iii) −x+5/2, y+1/2, −z+3/2; (iv) −x+3/2, y−1/2, −z+3/2; (v) x+1/2, −y+3/2, z+1/2; (vi) x−1/2, −y+3/2, z−1/2; (vii) −x+5/2, y−1/2, −z+3/2; (viii) −x+3/2, y+1/2, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2W—HW22···O6ix0.84 (1)2.46 (5)2.998 (4)122 (4)
O2W—HW22···O4W0.84 (1)2.39 (4)2.985 (10)128 (4)
O3W—HW31···O4vii0.85 (1)2.08 (2)2.874 (4)156 (4)
O4W—HW41···O1vii0.86 (12)2.43 (14)3.091 (12)133 (16)
O4W—HW42···O6iv0.85 (13)2.58 (14)3.124 (11)123 (14)
O1W—HW11···O7ii0.85 (1)2.10 (1)2.944 (4)173 (4)
O1W—HW12···O3vii0.85 (1)2.39 (4)2.935 (4)123 (3)
O2W—HW21···O2iv0.85 (1)1.92 (2)2.731 (4)161 (4)
O3W—HW32···O2Wx0.85 (1)2.33 (2)3.155 (5)163 (5)

Symmetry codes: (ix) x+1/2, −y+1/2, z−1/2; (vii) −x+5/2, y−1/2, −z+3/2; (iv) −x+3/2, y−1/2, −z+3/2; (ii) −x+2, −y+1, −z+2; (x) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5105).

References

  • Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Su, Z.-M. (2008). CrystEngComm, 10, 894–904.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography