PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2760.
Published online 2009 October 17. doi:  10.1107/S1600536809041300
PMCID: PMC2971402

(E)-3-[2-(4-Chloro­phenyl­sulfon­yl)vin­yl]-6-methyl-4H-chromen-4-one

Abstract

In the title compound, C18H13ClO4S, the mean planes of the chloro­phenyl ring and the S—C=C—C chain are oriented at angles of 52.7 (2) and 51.3 (2)°, respectively, with respect to the sulfonyl (O=S=O) plane. The dihedral angle between the mean planes of the chloro­phenyl group and the benzopyran ring is 80.7 (1)°. The crystal structure is stabilized by two inter­molecular C—H(...)O inter­actions, forming centrosymmetrc dimers, which are linked via a second C—H(...)O inter­action into a chain structure.

Related literature

For the biological properties of sulfonones and for related structures, see: Alonso et al. (2002 [triangle]); Raju et al. (1996 [triangle]); Chen et al. (1996 [triangle]); Mukundam (1990 [triangle]); Krishnaiah et al. (1995 [triangle]); Sethu Sankar et al. (2002 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]); Sethu Sankar et al. (2002 [triangle]). For double-bond character, see: Cruickshank (1961 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2760-scheme1.jpg

Experimental

Crystal data

  • C18H13ClO4S
  • M r = 360.79
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2760-efi1.jpg
  • a = 14.383 (3) Å
  • b = 9.656 (2) Å
  • c = 12.864 (2) Å
  • β = 112.630 (2)°
  • V = 1649.0 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.38 mm−1
  • T = 298 K
  • 0.20 × 0.15 × 0.08 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.920, T max = 0.960
  • 3643 measured reflections
  • 2774 independent reflections
  • 2088 reflections with I > 2σ(I)
  • R int = 0.081

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073
  • wR(F 2) = 0.245
  • S = 1.13
  • 2774 reflections
  • 219 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.63 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: enCIFer (Allen et al., 2004 [triangle]) and PARST (Nardelli, 1995 [triangle])’.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809041300/su2142sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041300/su2142Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MK thanks Ed. CEL, New Delhi, for sponsoring a visit to Yangon University, Myanmar

supplementary crystallographic information

Comment

Sulfones are useful building blocks in the preparation and functionalization of a wide variety of products (Alonso et al., 2002). They are similarly to sulfonamides, showing strong in vitro and in vivo antibacterial activity, and for almost 60 years have been used successfully in medicine. Certain sulfones also display anti-bacterial and anti-fungal properties (Raju et al., 1996). The anti-fungal activity of some unsaturated sulfones has been found to be dependent upon the substituents and stereochemical effects (Chen et al., 1996). The title compound has been observed to display anti-fungal activity against curularia luneta and furasium oxysporum (Mukundam, 1990). The determination of the structure of the title compound was undertaken to study the conformation of the molecule and to contribute to the growing structural data becoming available for the characterization of the structure activity relationships.

The molecular structure of the title compound is illustrated in Fig. 1. It is similar to the structures of the related compounds: (E)-6-Chloro-3-[2-(4-chlorophenylsulfonyl)ethenyl]-4-chromanone (I), (E)-6-Bromo-3-[2-(4-bromophenylsulfonyl)ethenyl]-4-chromanone (II), (i>E)-3-[2-(4-Chlorophenylsulfonyl)ethenyl]-6-methoxy-4-chromanone (III) (Raju et al., 1996), 3-[(2-(Phenylsulfonyl)ethenyl]-4H-1-benzopyran-4-one (IV) (Chen et al., 1996) and 3-[2-(4-Chlorophenylsulfonyl)ethenyl]-4H-1-benzopyran-4-one (V) (Krishnaiah et al., 1995). The bond lengths and angles are comparable with those observed for structures (I) - (V), but the dihedral angles are different. This is probably due to crystal packing effects and the presence of C-H···O hydrogen bonds. The bond distances reflect the electron delocalization of the O1—C2═C3—C9═C10 chain.

The mean S═O distance of 1.439 (3) Å is comparable with the reported value of 1.436 (2)Å (Sethu Sankar et al., 2002), and indicates double-bond character of over 60% (Cruickshank, 1961). The C-S distances are slightly different from those in the the related structures (I) - (V). This may reflect the different inductive effects of the chlorophenyl and the benzopyran units. The bond lengths S11-C10 [1.747 (4) Å], and S11-C12 [1.776 (4) Å], are in agreement, within experimental error, to the values found for S-C(aromatic) bonds, i.e. 1.763 (9)Å (Allen et al., 1987).

The chlorophenyl and the benzopyran rings are planar, with maximum deviations of 0.007 (3) and 0.014 (3) Å, respectively, and their mean planes are inclined to one another by 80.7 (1) °. The mean planes of the chlorophenyl group, and the ethane group with its immediate substituents, are oriented at angles of 52.0 (2) and 51.3 (2) °, respectively, with respect to the sulfonyl (O3═S11═O4) plane.

In the crystal structure of the title compound symmetry related molecules are linked via C-H···O interactions (Table 1), forming centrosymmetric dimers (via interaction C10-H10···O3). These in turn are linked via a second interaction (C2-H2···O2) to form a chain like structure (Fig. 2).

Experimental

The title compound was synthesized accordng to the procedure descibed by (Mukundam, 1990). To a solution of 1.74 mg (0.01 mol) of 6-methyl-4-oxo-4H-1-benzopyran-3-carboxaldehyde and 2.35 mg (0.01 mol) of 4 chlorophenylsulfonylacetic acid in 10 ml of glacial acetic acid was added 0.2 ml of benzyl amine. The resulting solution was refluxed for 3 h. The reaction mixture was cooled and yielded 1.5 mg of the title compound. It was recrystallized from glacial acetic acid, affording colourless crystals (m.p.500–504 k), suitable for X-ray diffraction analysis.

Refinement

All the H-atoms were included in calculated positions and treated as riding atoms: C—H (aromatic)= 0.93 Å, (C-methyl) C—H = 0.96 Å, with Uiso(H) = 1.2Ueq(C-aromatic) and = 1.5Ueq(C-methyl).

Figures

Fig. 1.
A view of the molecular structure of the title compound, showing the atom-labelling scheme and the displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
A partial view, along the b axis, of the crystal packing of the title compound. The C-H···O interactions are shown as dashed lines (see Table 1 for details).

Crystal data

C18H13ClO4SF(000) = 744
Mr = 360.79Dx = 1.453 Mg m3Dm = 1.45 Mg m3Dm measured by not measured
Monoclinic, P2/cMelting point: 500.15 K
Hall symbol: -P 2ycMo Kα radiation, λ = 0.71073 Å
a = 14.383 (3) ÅCell parameters from 3859 reflections
b = 9.656 (2) Åθ = 2–25°
c = 12.864 (2) ŵ = 0.38 mm1
β = 112.630 (2)°T = 298 K
V = 1649.0 (5) Å3Needle, colorless
Z = 40.20 × 0.15 × 0.08 mm

Data collection

Bruker SMART CCD diffractometer2774 independent reflections
Radiation source: fine-focus sealed tube2088 reflections with I > 2σ(I)
graphiteRint = 0.081
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −17→16
Tmin = 0.920, Tmax = 0.960k = −11→1
3643 measured reflectionsl = −1→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.245w = 1/[σ2(Fo2) + (0.1424P)2 + 0.7321P] where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.008
2774 reflectionsΔρmax = 0.45 e Å3
219 parametersΔρmin = −0.62 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S110.79047 (7)0.45722 (10)0.55267 (8)0.0653 (4)
Cl10.43852 (10)0.82582 (16)0.56710 (14)0.1059 (6)
O21.0746 (2)0.7324 (3)0.6813 (2)0.0788 (9)
C4'1.1219 (3)0.8837 (4)0.5657 (3)0.0574 (8)
C41.0592 (3)0.7751 (4)0.5861 (3)0.0616 (9)
C30.9782 (3)0.7252 (4)0.4844 (3)0.0583 (9)
O40.7593 (2)0.4008 (3)0.4412 (3)0.0777 (8)
C61.2619 (3)1.0455 (4)0.6351 (4)0.0722 (11)
C120.6889 (3)0.5579 (4)0.5576 (3)0.0613 (9)
O11.0265 (2)0.8753 (3)0.3664 (2)0.0728 (8)
C90.9046 (3)0.6224 (4)0.4845 (3)0.0636 (9)
H90.86610.58300.41520.076*
C20.9698 (3)0.7770 (4)0.3830 (3)0.0684 (10)
H20.91950.73990.31940.082*
C100.8861 (3)0.5783 (4)0.5725 (3)0.0629 (9)
H100.92380.61180.64420.075*
C8'1.1045 (3)0.9293 (4)0.4586 (3)0.0627 (9)
C81.1617 (3)1.0315 (5)0.4360 (4)0.0741 (11)
H81.14671.06190.36270.089*
C130.6932 (3)0.6080 (5)0.6603 (3)0.0722 (11)
H130.74750.58610.72630.087*
C160.5307 (3)0.6686 (5)0.4631 (4)0.0756 (11)
H160.47550.68840.39750.091*
O30.8228 (3)0.3653 (3)0.6485 (3)0.0856 (9)
C51.2020 (3)0.9448 (4)0.6535 (3)0.0660 (10)
H51.21560.91640.72700.079*
C71.2404 (3)1.0864 (5)0.5239 (4)0.0768 (12)
H71.28091.15270.50960.092*
C150.5361 (3)0.7201 (5)0.5646 (4)0.0753 (11)
C170.6081 (3)0.5870 (4)0.4594 (3)0.0670 (10)
H170.60570.55200.39110.080*
C140.6162 (3)0.6907 (5)0.6636 (4)0.0801 (12)
H140.61820.72620.73170.096*
C181.3464 (4)1.1129 (7)0.7322 (5)0.1089 (18)
H18A1.35311.06810.80140.163*
H18B1.33131.20920.73610.163*
H18C1.40831.10420.72080.163*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S110.0613 (7)0.0646 (7)0.0748 (7)0.0011 (4)0.0317 (5)0.0050 (4)
Cl10.0822 (9)0.1144 (11)0.1406 (12)0.0215 (7)0.0644 (8)0.0071 (8)
O20.0699 (17)0.113 (2)0.0547 (14)−0.0154 (16)0.0252 (12)0.0102 (14)
C4'0.0538 (19)0.069 (2)0.0583 (19)0.0042 (16)0.0315 (16)−0.0014 (15)
C40.0542 (19)0.082 (3)0.0558 (19)0.0068 (17)0.0296 (15)0.0023 (16)
C30.057 (2)0.067 (2)0.0578 (18)0.0020 (16)0.0298 (16)−0.0019 (15)
O40.0782 (19)0.0796 (19)0.0824 (19)−0.0013 (15)0.0389 (15)−0.0088 (14)
C60.058 (2)0.079 (3)0.084 (3)−0.0046 (18)0.032 (2)−0.009 (2)
C120.056 (2)0.065 (2)0.070 (2)−0.0070 (16)0.0308 (17)0.0014 (16)
O10.0742 (18)0.095 (2)0.0545 (14)−0.0101 (15)0.0307 (13)0.0027 (12)
C90.061 (2)0.069 (2)0.066 (2)0.0088 (17)0.0309 (17)−0.0005 (17)
C20.069 (2)0.085 (3)0.0552 (19)−0.004 (2)0.0284 (17)−0.0076 (18)
C100.055 (2)0.067 (2)0.071 (2)0.0021 (17)0.0300 (17)0.0010 (17)
C8'0.060 (2)0.076 (2)0.063 (2)0.0023 (18)0.0347 (18)−0.0033 (17)
C80.075 (3)0.086 (3)0.074 (3)0.000 (2)0.043 (2)0.009 (2)
C130.060 (2)0.093 (3)0.064 (2)−0.005 (2)0.0241 (18)−0.0007 (19)
C160.057 (2)0.092 (3)0.076 (2)−0.001 (2)0.0240 (19)0.011 (2)
O30.084 (2)0.081 (2)0.094 (2)0.0081 (16)0.0366 (16)0.0270 (16)
C50.058 (2)0.081 (3)0.064 (2)0.0021 (18)0.0292 (17)0.0012 (17)
C70.072 (3)0.076 (3)0.099 (3)−0.004 (2)0.051 (2)−0.002 (2)
C150.062 (2)0.078 (3)0.101 (3)−0.003 (2)0.048 (2)0.005 (2)
C170.061 (2)0.079 (3)0.063 (2)−0.0004 (19)0.0264 (18)0.0054 (17)
C140.072 (3)0.098 (3)0.081 (3)−0.005 (2)0.041 (2)−0.013 (2)
C180.084 (3)0.123 (5)0.118 (4)−0.038 (3)0.037 (3)−0.019 (3)

Geometric parameters (Å, °)

S11—O41.435 (3)C9—H90.9300
S11—O31.443 (3)C2—H20.9300
S11—C101.747 (4)C10—H100.9300
S11—C121.776 (4)C8'—C81.386 (6)
Cl1—C151.746 (4)C8—C71.362 (6)
O2—C41.229 (4)C8—H80.9300
C4'—C8'1.375 (5)C13—C141.380 (6)
C4'—C51.396 (5)C13—H130.9300
C4'—C41.471 (5)C16—C151.371 (6)
C4—C31.459 (5)C16—C171.379 (6)
C3—C21.358 (5)C16—H160.9300
C3—C91.451 (5)C5—H50.9300
C6—C51.378 (5)C7—H70.9300
C6—C71.400 (6)C15—C141.378 (7)
C6—C181.514 (7)C17—H170.9300
C12—C171.377 (5)C14—H140.9300
C12—C131.386 (5)C18—H18A0.9600
O1—C21.322 (5)C18—H18B0.9600
O1—C8'1.383 (5)C18—H18C0.9600
C9—C101.329 (5)
O4—S11—O3119.6 (2)C4'—C8'—C8122.9 (4)
O4—S11—C10109.03 (18)O1—C8'—C8116.1 (3)
O3—S11—C10108.1 (2)C7—C8—C8'118.4 (4)
O4—S11—C12107.37 (18)C7—C8—H8120.8
O3—S11—C12107.75 (18)C8'—C8—H8120.8
C10—S11—C12103.90 (18)C14—C13—C12119.3 (4)
C8'—C4'—C5116.8 (3)C14—C13—H13120.3
C8'—C4'—C4121.2 (3)C12—C13—H13120.3
C5—C4'—C4121.9 (3)C15—C16—C17119.3 (4)
O2—C4—C3124.0 (4)C15—C16—H16120.3
O2—C4—C4'121.9 (3)C17—C16—H16120.3
C3—C4—C4'114.1 (3)C6—C5—C4'122.3 (4)
C2—C3—C9117.2 (3)C6—C5—H5118.8
C2—C3—C4119.0 (3)C4'—C5—H5118.8
C9—C3—C4123.8 (3)C8—C7—C6121.6 (4)
C5—C6—C7117.9 (4)C8—C7—H7119.2
C5—C6—C18121.2 (4)C6—C7—H7119.2
C7—C6—C18120.9 (4)C16—C15—C14121.8 (4)
C17—C12—C13121.0 (4)C16—C15—Cl1118.6 (4)
C17—C12—S11119.6 (3)C14—C15—Cl1119.7 (4)
C13—C12—S11119.3 (3)C12—C17—C16119.5 (4)
C2—O1—C8'118.6 (3)C12—C17—H17120.3
C10—C9—C3127.2 (4)C16—C17—H17120.3
C10—C9—H9116.4C15—C14—C13119.0 (4)
C3—C9—H9116.4C15—C14—H14120.5
O1—C2—C3126.0 (4)C13—C14—H14120.5
O1—C2—H2117.0C6—C18—H18A109.5
C3—C2—H2117.0C6—C18—H18B109.5
C9—C10—S11119.6 (3)H18A—C18—H18B109.5
C9—C10—H10120.2C6—C18—H18C109.5
S11—C10—H10120.2H18A—C18—H18C109.5
C4'—C8'—O1121.0 (3)H18B—C18—H18C109.5
C8'—C4'—C4—O2179.2 (4)C4—C4'—C8'—O10.7 (5)
C5—C4'—C4—O2−0.3 (6)C5—C4'—C8'—C8−0.6 (6)
C8'—C4'—C4—C3−1.3 (5)C4—C4'—C8'—C8179.8 (4)
C5—C4'—C4—C3179.2 (3)C2—O1—C8'—C4'−1.1 (5)
O2—C4—C3—C2−178.2 (4)C2—O1—C8'—C8179.7 (3)
C4'—C4—C3—C22.3 (5)C4'—C8'—C8—C71.9 (6)
O2—C4—C3—C92.0 (6)O1—C8'—C8—C7−178.9 (4)
C4'—C4—C3—C9−177.5 (3)C17—C12—C13—C14−1.3 (6)
O4—S11—C12—C17−10.5 (4)S11—C12—C13—C14177.5 (3)
O3—S11—C12—C17−140.6 (3)C7—C6—C5—C4'−0.2 (6)
C10—S11—C12—C17104.9 (3)C18—C6—C5—C4'178.2 (4)
O4—S11—C12—C13170.7 (3)C8'—C4'—C5—C6−0.3 (6)
O3—S11—C12—C1340.6 (4)C4—C4'—C5—C6179.3 (3)
C10—S11—C12—C13−73.9 (3)C8'—C8—C7—C6−2.3 (7)
C2—C3—C9—C10−165.8 (4)C5—C6—C7—C81.5 (6)
C4—C3—C9—C1014.0 (6)C18—C6—C7—C8−176.8 (5)
C8'—O1—C2—C32.4 (6)C17—C16—C15—C14−1.1 (7)
C9—C3—C2—O1176.7 (4)C17—C16—C15—Cl1178.8 (3)
C4—C3—C2—O1−3.0 (6)C13—C12—C17—C160.7 (6)
C3—C9—C10—S11177.8 (3)S11—C12—C17—C16−178.1 (3)
O4—S11—C10—C912.3 (4)C15—C16—C17—C120.5 (6)
O3—S11—C10—C9143.8 (3)C16—C15—C14—C130.4 (7)
C12—S11—C10—C9−101.9 (3)Cl1—C15—C14—C13−179.4 (3)
C5—C4'—C8'—O1−179.7 (3)C12—C13—C14—C150.8 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.333.248 (5)167
C10—H10···O2ii0.932.523.344 (5)148

Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x+2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2142).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Alonso, D. A., Najera, C. & Varea, M. (2002). Tetrahedron Lett.4, 3459–3461.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Y.-S., Khan, M., Rao, S. N., Krishnaiah, M. & Raju, K. V. N. (1996). Acta Cryst. C52, 1847–1849.
  • Cruickshank, D. W. J. (1961). J. Chem. Soc. pp. 5486–5504.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Krishnaiah, M., Narayana Raju, K. V., Lu, I.-L., Chen, Y.-S. & Narasinga Rao, S. (1995). Acta Cryst. C51, 2429–2430.
  • Mukundam, M. (1990). PhD thesis, Department of Chemistry, S. V. University, Tirupati, India.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Raju, K. V. N., Krishnaiah, M., Chen, Y.-S., Rao, S. N. & Holt, E. M. (1996). Acta Cryst. C52, 2212–2215.
  • Sethu Sankar, K., Velmurugan, D., Thirumamagal, B. T. S., Shanmuga Sundara Raj, S., Fun, H.-K. & Moon, J.-K. (2002). Acta Cryst. C58, o257–o259. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography