PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2690.
Published online 2009 October 10. doi:  10.1107/S1600536809040343
PMCID: PMC2971395

Di-tert-butyl cyclo­hex-2-ene-1,4-diyl dicarbonate

Abstract

In the title mol­ecule, C16H26O6, the central cyclo­hexene ring is in a half-chair conformation. The carbonyl groups are in a trans arrangement with respect to each other and the dihedral angle between the mean planes of the carbonate groups is 10.8 (2)°.

Related literature

For synthetic applications of the title compound, see: Ali, Ghafouri et al. (2008 [triangle]). For a related structures, see: Ali, Begum et al. (2008 [triangle]); Rademeyer et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2690-scheme1.jpg

Experimental

Crystal data

  • C16H26O6
  • M r = 314.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2690-efi1.jpg
  • a = 12.6548 (11) Å
  • b = 5.8862 (6) Å
  • c = 23.126 (2) Å
  • β = 103.147 (5)°
  • V = 1677.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 150 K
  • 0.10 × 0.09 × 0.02 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing 1995 [triangle]) T min = 0.865, T max = 1.00
  • 9313 measured reflections
  • 2893 independent reflections
  • 1407 reflections with I > 2σ(I)
  • R int = 0.101

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.191
  • S = 1.00
  • 2893 reflections
  • 205 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: COLLECT (Nonius, 2002 [triangle]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809040343/ez2186sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040343/ez2186Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge funding from the Higher Education Commission (HEC), Pakistan, Materials and Manufacturing Ontario (MMO), Canada, NSERC Canada and the University of Toronto.

supplementary crystallographic information

Comment

The title compound (I), is a new synthetic precursor of trans-cyclohex-2-ene-1,4-diol which has been synthesized for plasticizing purposes in order to break the crystallinity of a number of polyformals, and polycarbonates (Ali, Ghafouri et al., 2008). The molecular structure of (I) is shown in Fig. 1. Unlike the crystal structure of trans-Cyclohex-2-ene-1,4-diyl bis(4-nitrophenyl) dicarbonate (Ali, Begum et al., 2008) the central cyclohexene ring is completely ordered.

Experimental

A reaction mixture containing trans-cyclohex-2-ene-1,4-diol (0.59 g, 5.18 mmol), di-tert-butyldicarbonate (2.26 g, 10.36 mmol) and N,N-dimethylaminopyridine (DMAP) (0.80 g, 6.57 mmol) was stirred in dry dichloromethane (80 ml) at room temperature in a 250 ml round-bottom flask (see Fig. 2). After 4 h, it was transferred to a separatory funnel (250 ml) and washed with CH3COOH (30 ml x 3, 0.1 M) to remove the excess of DMAP. The lower organic phase was removed and the aqueous phase was washed with dichloromethane (30 ml x 2). All the dichloromethane solutions were combined, washed with deionized water (30 ml x 3), and dried over anhydrous MgSO4. After filtration, the solvent was removed by rotary evaporator. The resulting oily product was dried in vacuum oven at room temperature to obtain di-tert-butyl-cyclohex-2-ene-1,4-diyl dicarbonate (I, 1.14 g, 69.5%). The product was then recrystallized from a mixture of CHCl3: MeOH (1:1) to afford needle-shaped crystals by slow evaporation of the solvent at room temperature. In addition to the X-ray structure determination, the structure was also confirmed by comparing the 1H and 13C NMR data with a related t-Boc protected compound (Rademeyer et al., 2003). 1H NMR (CDCl3, p.p.m., relative to TMS, 400 MHz): 5.98 (2H, br.s, CH=CH), 5.16 (2H, m, CH—O), 2.08 (2H, m, CH2—CH2), 1.80 (2H, m, CH2—CH2), 1.48 (18H, s, CH3); 13C NMR (CDCl3, p.p.m., relative to TMS, 100 MHz): 168.4 (C=O), 129.1 (CH=CH), 71.4 (2H, CH—O), 66.3 (C(CH3)3O), 25.2 (CH2), 28.0 (CH3)

Refinement

Hydrogen atoms were placed in calculated positions with C—H distances ranging from 0.95 to 1.00 Å and included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound showing 30% probability ellipsoids.
Fig. 2.
Preparation of the title compound.

Crystal data

C16H26O6F(000) = 680
Mr = 314.37Dx = 1.245 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9313 reflections
a = 12.6548 (11) Åθ = 2.7–25.0°
b = 5.8862 (6) ŵ = 0.09 mm1
c = 23.126 (2) ÅT = 150 K
β = 103.147 (5)°Plate, colourless
V = 1677.5 (3) Å30.10 × 0.09 × 0.02 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer2893 independent reflections
Radiation source: fine-focus sealed tube1407 reflections with I > 2σ(I)
graphiteRint = 0.101
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.7°
[var phi] scans and ω scans with κ offsetsh = −15→15
Absorption correction: multi-scan (SORTAV; Blessing 1995)k = −6→6
Tmin = 0.865, Tmax = 1.00l = −27→27
9313 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0826P)2] where P = (Fo2 + 2Fc2)/3
2893 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.3871 (2)−0.2647 (5)0.54229 (13)0.0663 (10)
O20.28611 (18)−0.5049 (4)0.48553 (11)0.0489 (7)
O30.2107 (2)−0.2869 (4)0.54593 (11)0.0503 (7)
O40.62164 (19)0.3112 (4)0.70717 (12)0.0558 (8)
O50.72570 (17)0.5487 (4)0.76245 (10)0.0448 (7)
O60.80169 (19)0.2813 (4)0.71320 (11)0.0460 (7)
C10.4089 (3)−0.0972 (7)0.59017 (18)0.0585 (12)
H1A0.3386−0.03730.59680.070*
C20.4714 (4)0.0915 (7)0.57122 (18)0.0634 (13)
H2A0.45020.14430.53140.076*
C30.5543 (4)0.1881 (6)0.60687 (19)0.0620 (12)
H3A0.58730.31420.59240.074*
C40.5991 (3)0.1123 (6)0.66812 (17)0.0494 (11)
H4A0.66780.02590.66990.059*
C50.5203 (3)−0.0339 (7)0.69112 (17)0.0589 (12)
H5A0.5584−0.11100.72800.071*
H5B0.46240.06250.70070.071*
C60.4707 (4)−0.2079 (7)0.64578 (17)0.0627 (12)
H6A0.5287−0.30470.63650.075*
H6B0.4213−0.30650.66220.075*
C70.2865 (3)−0.3486 (6)0.52697 (16)0.0449 (10)
C80.1825 (3)−0.6087 (6)0.45306 (15)0.0405 (9)
C90.1263 (3)−0.7330 (6)0.49534 (16)0.0555 (12)
H9A0.1044−0.62340.52230.083*
H9B0.1764−0.84410.51850.083*
H9C0.0620−0.81170.47250.083*
C100.1114 (3)−0.4266 (6)0.41818 (16)0.0475 (10)
H10A0.0908−0.31740.44570.071*
H10B0.0459−0.49640.39380.071*
H10C0.1513−0.34800.39240.071*
C110.2218 (3)−0.7736 (6)0.41206 (17)0.0551 (12)
H11A0.2735−0.88040.43570.083*
H11B0.2575−0.68910.38530.083*
H11C0.1598−0.85770.38860.083*
C120.7258 (3)0.3718 (6)0.72638 (15)0.0387 (9)
C130.8304 (3)0.6424 (6)0.79714 (15)0.0389 (9)
C140.8905 (3)0.4608 (6)0.83795 (16)0.0506 (11)
H14A0.91380.34070.81420.076*
H14B0.84250.39610.86140.076*
H14C0.95430.52780.86460.076*
C150.8964 (3)0.7397 (6)0.75658 (16)0.0441 (10)
H15A0.85390.85620.73120.066*
H15B0.91550.61840.73180.066*
H15C0.96280.80810.78040.066*
C160.7894 (3)0.8280 (6)0.83263 (16)0.0498 (10)
H16A0.74430.93540.80530.075*
H16B0.85130.90860.85720.075*
H16C0.74610.75910.85820.075*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0400 (15)0.080 (2)0.074 (2)−0.0034 (15)0.0022 (14)−0.0451 (17)
O20.0407 (14)0.0519 (16)0.0495 (16)−0.0001 (12)0.0006 (12)−0.0191 (13)
O30.0462 (15)0.0593 (18)0.0468 (18)−0.0065 (13)0.0135 (14)−0.0159 (13)
O40.0369 (14)0.0573 (17)0.071 (2)−0.0031 (13)0.0078 (13)−0.0341 (15)
O50.0377 (14)0.0478 (15)0.0467 (16)−0.0061 (12)0.0049 (12)−0.0142 (13)
O60.0397 (14)0.0440 (15)0.0536 (18)0.0009 (12)0.0090 (13)−0.0072 (13)
C10.043 (2)0.067 (3)0.060 (3)−0.002 (2)0.000 (2)−0.034 (2)
C20.090 (3)0.047 (3)0.043 (3)0.003 (2)−0.005 (2)−0.002 (2)
C30.098 (3)0.039 (2)0.054 (3)−0.014 (2)0.027 (3)−0.012 (2)
C40.043 (2)0.052 (2)0.053 (3)−0.0016 (19)0.0120 (19)−0.022 (2)
C50.073 (3)0.052 (2)0.048 (3)−0.011 (2)0.006 (2)0.003 (2)
C60.086 (3)0.057 (3)0.048 (3)−0.028 (2)0.022 (2)−0.009 (2)
C70.050 (2)0.045 (2)0.035 (2)0.001 (2)0.000 (2)−0.0070 (19)
C80.041 (2)0.041 (2)0.035 (2)−0.0049 (17)−0.0024 (17)−0.0031 (17)
C90.065 (3)0.052 (3)0.045 (3)−0.007 (2)0.003 (2)0.001 (2)
C100.048 (2)0.051 (2)0.040 (2)−0.0012 (19)0.0032 (18)0.0025 (19)
C110.055 (2)0.057 (3)0.048 (3)0.003 (2)0.001 (2)−0.015 (2)
C120.039 (2)0.042 (2)0.034 (2)−0.0034 (19)0.0052 (18)0.0001 (18)
C130.038 (2)0.039 (2)0.035 (2)−0.0065 (17)0.0003 (17)−0.0009 (17)
C140.060 (2)0.044 (2)0.043 (2)−0.006 (2)0.0008 (19)0.0045 (19)
C150.045 (2)0.042 (2)0.043 (2)−0.0025 (18)0.0069 (18)−0.0016 (18)
C160.052 (2)0.051 (2)0.043 (2)−0.010 (2)0.0044 (19)−0.0085 (19)

Geometric parameters (Å, °)

O1—C71.337 (4)C8—C101.510 (4)
O1—C11.461 (4)C8—C111.518 (5)
O2—C71.328 (4)C8—C91.521 (5)
O2—C81.486 (4)C9—H9A0.9800
O3—C71.197 (4)C9—H9B0.9800
O4—C121.340 (4)C9—H9C0.9800
O4—C41.466 (4)C10—H10A0.9800
O5—C121.334 (4)C10—H10B0.9800
O5—C131.490 (4)C10—H10C0.9800
O6—C121.197 (4)C11—H11A0.9800
C1—C21.486 (6)C11—H11B0.9800
C1—C61.494 (5)C11—H11C0.9800
C1—H1A1.0000C13—C151.504 (5)
C2—C31.307 (5)C13—C141.512 (4)
C2—H2A0.9500C13—C161.527 (5)
C3—C41.470 (5)C14—H14A0.9800
C3—H3A0.9500C14—H14B0.9800
C4—C51.503 (5)C14—H14C0.9800
C4—H4A1.0000C15—H15A0.9800
C5—C61.497 (5)C15—H15B0.9800
C5—H5A0.9900C15—H15C0.9800
C5—H5B0.9900C16—H16A0.9800
C6—H6A0.9900C16—H16B0.9800
C6—H6B0.9900C16—H16C0.9800
C7—O1—C1117.0 (3)C8—C9—H9B109.5
C7—O2—C8120.5 (3)H9A—C9—H9B109.5
C12—O4—C4117.1 (3)C8—C9—H9C109.5
C12—O5—C13119.9 (3)H9A—C9—H9C109.5
O1—C1—C2107.6 (3)H9B—C9—H9C109.5
O1—C1—C6109.2 (3)C8—C10—H10A109.5
C2—C1—C6111.7 (3)C8—C10—H10B109.5
O1—C1—H1A109.4H10A—C10—H10B109.5
C2—C1—H1A109.4C8—C10—H10C109.5
C6—C1—H1A109.4H10A—C10—H10C109.5
C3—C2—C1122.9 (4)H10B—C10—H10C109.5
C3—C2—H2A118.5C8—C11—H11A109.5
C1—C2—H2A118.5C8—C11—H11B109.5
C2—C3—C4123.6 (4)H11A—C11—H11B109.5
C2—C3—H3A118.2C8—C11—H11C109.5
C4—C3—H3A118.2H11A—C11—H11C109.5
O4—C4—C3109.2 (3)H11B—C11—H11C109.5
O4—C4—C5106.9 (3)O6—C12—O5128.4 (3)
C3—C4—C5111.9 (3)O6—C12—O4125.7 (3)
O4—C4—H4A109.6O5—C12—O4106.0 (3)
C3—C4—H4A109.6O5—C13—C15110.9 (3)
C5—C4—H4A109.6O5—C13—C14109.5 (3)
C6—C5—C4110.5 (3)C15—C13—C14112.8 (3)
C6—C5—H5A109.6O5—C13—C16100.6 (3)
C4—C5—H5A109.6C15—C13—C16111.6 (3)
C6—C5—H5B109.6C14—C13—C16110.8 (3)
C4—C5—H5B109.6C13—C14—H14A109.5
H5A—C5—H5B108.1C13—C14—H14B109.5
C1—C6—C5111.0 (3)H14A—C14—H14B109.5
C1—C6—H6A109.4C13—C14—H14C109.5
C5—C6—H6A109.4H14A—C14—H14C109.5
C1—C6—H6B109.4H14B—C14—H14C109.5
C5—C6—H6B109.4C13—C15—H15A109.5
H6A—C6—H6B108.0C13—C15—H15B109.5
O3—C7—O2127.1 (3)H15A—C15—H15B109.5
O3—C7—O1125.8 (3)C13—C15—H15C109.5
O2—C7—O1107.1 (3)H15A—C15—H15C109.5
O2—C8—C10109.2 (3)H15B—C15—H15C109.5
O2—C8—C11101.6 (3)C13—C16—H16A109.5
C10—C8—C11111.1 (3)C13—C16—H16B109.5
O2—C8—C9111.1 (3)H16A—C16—H16B109.5
C10—C8—C9112.1 (3)C13—C16—H16C109.5
C11—C8—C9111.2 (3)H16A—C16—H16C109.5
C8—C9—H9A109.5H16B—C16—H16C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2186).

References

  • Ali, S., Begum, S., Winnik, M. A. & Lough, A. J. (2008). Acta Cryst. E64, o281. [PMC free article] [PubMed]
  • Ali, S., Ghafouri, S., Yin, Z., Froimowicz, P., Begum, S. & Winnik, M. A. (2008). Eur. Polym. J.44, 4129–4138.
  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rademeyer, M., Barkhuizen, D. A. & Maguire, G. E. M. (2003). Acta Cryst. E59, o1650–o1652.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography