PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1315.
Published online 2009 October 7. doi:  10.1107/S160053680904001X
PMCID: PMC2971393

Poly[bis­[μ2-2-(1H-1,2,4-triazol-1-yl)acetato]zinc(II)]

Abstract

In the title compound, [Zn(C4H4N3O2)2]n, the ZnII atom is coordinated by two O atoms [Zn—O = 1.969 (2) and 1.997 (2) Å] and two N atoms [Zn—N = 2.046 (2) and 2.001 (2) Å] in a distorted tetra­hedral geometry. Non-classical inter­molecular C—H(...)O hydrogen bonds link the complex into a three-dimensional supra­molecular framework.

Related literature

For related structures, see: Dixon et al. (2000 [triangle]); Fujita et al. (1998 [triangle]); Ouellette et al. (2006 [triangle]); Xie et al. (2009 [triangle]); Zhou et al. (2009 [triangle]). For the preparation of 2-(1H-1,2,4-triazol-1-yl)acetic acid, see: Zaderenko et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1315-scheme1.jpg

Experimental

Crystal data

  • [Zn(C4H4N3O2)2]
  • M r = 317.57
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1315-efi17.jpg
  • a = 8.791 (1) Å
  • b = 13.514 (2) Å
  • c = 10.006 (1) Å
  • β = 99.458 (1)°
  • V = 1172.6 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.12 mm−1
  • T = 293 K
  • 0.38 × 0.20 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.609, T max = 0.792
  • 8509 measured reflections
  • 2286 independent reflections
  • 1956 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.057
  • S = 1.04
  • 2286 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680904001X/lx2113sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904001X/lx2113Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was sponsored by the start-up fund of Henan Agricultural University (No. 30700061) and the Natural Science Foundation of Henan Province (No. 200510469005).

supplementary crystallographic information

Comment

The triazoles are members of the polyazaheteroaromatic class of compounds such as pyrazole, imidazole, and tetrazole, which are significant for their technological applications and for their widespread use as bridging ligands. (Ouellette et al., 2006). Triazole derivatives have been studied as anti-inflammatory drug candidates and also been used as ligands for binding Pt and Ru to form antitumor metal complexes. A system takes advantage of the multifunction of the carboxylate and triazolyl group to develop the complexes (Xie et al., 2009; Zhou et al., 2009).

Here we report the crystal structure of the title compound (Fig. 1). Each zincII atom is four-coordinated by two nitrogen atoms (N3 and N6) and two oxygen atoms (O1 and O3) from four distinct ligands, and the coordination bond lengths of Zn–N and Zn–O are 2.046 (2), 2.001 (2) Å and 1.969 (2), 1.997 (2) Å, respectively. The coordination geometry around ZnII could be described as a distorted tetrahedral configuration because the O–Zn–N coordination angles are in the range from 98.54 (6)° to 124.72 (7)° . The fully deprotonated ligand establishes a physical bridge between Zn atoms. Four ZnII centers are linked together by four ligands through triazole N-donors and carboxylate O-donors into a 28-membered box macrocycle. This cavity, however, is arguably not a rectangular box(Dixon et al., 2000; Fujita et al., 1998), because not all the sides are truly face-to-face parallel. Taking advantage of these twists in ligands, the approximate dimensions of the rectangles are 8.5644 (9) * 8.0680 (9) Å, measured by the distance between the Zn···Zn i separations (symmetry code (i): - x + 2, y - 1/2, - z + 1/2), and Zn···Znii separations (symmetry code (ii): - x + 1, y + 1/2, - z + 1/2). Thus the macrocycle unit is interconnected to yield a two-dimensional sheet along ab plane(Fig. 2). Molecules are linked by non-classical intermolecular C–H···O hydrogen bonds (Table 1 and Fig. 3).

Experimental

The ligand 2-(1H-1,2,4-triazol-1-yl)acetic acid was prepared by the literature method (Zaderenko et al., 1994). A solution of 2-(1H-1,2,4-triazol-1-yl)acetic acid (0.1 mmol), Zn(NO3)2.6H2O (0.1 mmol) and NaOH (0.1 mmol) in 30 ml ethanol was refluxed for 2 h, and then cooled to room temperature and filtered. After ten days, colourless single crystals suitable for X-ray analysis were obtained. Anal. Calcd(%) for C8H8ZnN6O4: C, 30.26; H, 2.54; N, 26.46. Found: C, 30.22; H, 2.60; N, 26.50.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for the triazole and 0.97 Å for the methylene H atoms. Uiso(H) = 1.2Ueq(C) for the triazole and the methylene H atoms.

Figures

Fig. 1.
Molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering [symmetry codes: (i) - x + 2, y - 1/2, - z + 1/2; (ii) - x + 1, y + 1/2, - z + 1/2.]
Fig. 2.
Two-dimensional polymeric structure of the title compound.
Fig. 3.
C–H···O hydrogen bonds (dotted lines) in the title compound. [symmetry codes: (i) - x + 1, y + 1/2, - z + 1/2; (ii) x - 1, - y + 1/2, z - 1/2; (iii) x, - y - 1/2, z + 1/2; (iv) x + 1, - y + 1/2, z + 1/2; (v) - x + 1, y ...

Crystal data

[Zn(C4H4N3O2)2]F(000) = 640
Mr = 317.57Dx = 1.799 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3281 reflections
a = 8.791 (1) Åθ = 2.6–26.5°
b = 13.514 (2) ŵ = 2.12 mm1
c = 10.006 (1) ÅT = 293 K
β = 99.458 (1)°Block, colorless
V = 1172.6 (2) Å30.38 × 0.20 × 0.11 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer2286 independent reflections
Radiation source: fine-focus sealed tube1956 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −10→10
Tmin = 0.609, Tmax = 0.792k = −16→16
8509 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: difference Fourier map
wR(F2) = 0.057H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0228P)2 + 0.7046P] where P = (Fo2 + 2Fc2)/3
2286 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn0.70429 (3)0.049976 (17)0.14839 (2)0.02917 (9)
O11.19552 (19)0.45868 (11)0.46359 (16)0.0407 (4)
O21.1138 (2)0.37002 (13)0.27788 (17)0.0499 (5)
O30.3598 (2)−0.34549 (11)0.49053 (16)0.0418 (4)
O40.4781 (2)−0.29890 (13)0.32459 (18)0.0585 (5)
N10.9991 (2)0.22447 (13)0.41958 (18)0.0335 (4)
N21.0940 (2)0.14488 (15)0.4250 (2)0.0470 (5)
N30.8718 (2)0.11702 (12)0.28465 (18)0.0321 (4)
N40.4890 (2)−0.10956 (12)0.41086 (17)0.0306 (4)
N50.3571 (2)−0.06552 (14)0.3463 (2)0.0416 (5)
N60.5619 (2)−0.01888 (12)0.25474 (17)0.0294 (4)
C11.0113 (3)0.08183 (18)0.3430 (2)0.0429 (6)
H11.04560.01860.32660.052*
C20.8698 (3)0.20781 (16)0.3354 (2)0.0344 (5)
H20.78930.25280.31470.041*
C31.0519 (3)0.31596 (17)0.4896 (2)0.0401 (6)
H3A1.12550.30030.57010.048*
H3B0.96490.34920.51810.048*
C41.1271 (2)0.38505 (16)0.3997 (2)0.0333 (5)
C50.4076 (3)−0.01127 (17)0.2543 (2)0.0369 (5)
H50.34350.02890.19400.044*
C60.6078 (3)−0.08246 (16)0.3545 (2)0.0320 (5)
H60.7085−0.10450.38050.038*
C70.4817 (3)−0.18783 (16)0.5093 (2)0.0370 (5)
H7A0.4055−0.17140.56560.044*
H7B0.5810−0.19450.56740.044*
C80.4383 (3)−0.28544 (16)0.4351 (2)0.0333 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn0.03301 (15)0.02428 (14)0.02973 (14)−0.00137 (10)0.00366 (10)0.00331 (10)
O10.0491 (10)0.0311 (9)0.0414 (9)−0.0133 (7)0.0059 (8)−0.0041 (7)
O20.0666 (12)0.0483 (11)0.0364 (10)−0.0205 (9)0.0128 (8)−0.0035 (8)
O30.0579 (11)0.0291 (8)0.0379 (9)−0.0138 (8)0.0059 (8)−0.0029 (7)
O40.0943 (15)0.0394 (10)0.0484 (11)−0.0108 (10)0.0309 (11)−0.0129 (8)
N10.0381 (11)0.0292 (10)0.0333 (10)−0.0092 (8)0.0060 (8)−0.0011 (8)
N20.0451 (13)0.0363 (11)0.0531 (13)0.0013 (9)−0.0113 (10)−0.0015 (10)
N30.0319 (10)0.0281 (9)0.0354 (10)−0.0043 (7)0.0032 (8)−0.0007 (8)
N40.0375 (11)0.0251 (9)0.0291 (9)−0.0064 (7)0.0054 (8)−0.0006 (7)
N50.0344 (11)0.0418 (12)0.0494 (12)−0.0002 (9)0.0096 (9)0.0028 (9)
N60.0322 (10)0.0240 (9)0.0311 (9)−0.0026 (7)0.0030 (8)0.0035 (7)
C10.0427 (15)0.0323 (12)0.0493 (14)0.0039 (10)−0.0059 (11)−0.0013 (11)
C20.0300 (12)0.0313 (12)0.0422 (13)−0.0029 (9)0.0064 (10)−0.0008 (10)
C30.0503 (15)0.0370 (13)0.0336 (12)−0.0152 (11)0.0087 (11)−0.0082 (10)
C40.0310 (12)0.0282 (11)0.0402 (13)−0.0029 (9)0.0044 (10)0.0000 (9)
C50.0328 (13)0.0354 (12)0.0414 (13)0.0032 (10)0.0027 (10)0.0053 (10)
C60.0306 (12)0.0299 (11)0.0347 (12)−0.0035 (9)0.0028 (9)0.0027 (9)
C70.0543 (15)0.0306 (12)0.0269 (11)−0.0139 (10)0.0092 (10)−0.0012 (9)
C80.0421 (13)0.0273 (11)0.0288 (11)−0.0007 (9)0.0003 (10)0.0006 (9)

Geometric parameters (Å, °)

Zn—O1i1.9693 (15)N4—C61.318 (3)
Zn—O3ii1.9970 (15)N4—N51.367 (3)
Zn—N62.0010 (17)N4—C71.454 (3)
Zn—N32.0463 (17)N5—C51.310 (3)
O1—C41.278 (3)N6—C61.328 (3)
O1—Zniii1.9693 (15)N6—C51.359 (3)
O2—C41.223 (3)C1—H10.9300
O3—C81.252 (3)C2—H20.9300
O3—Zniv1.9970 (15)C3—C41.520 (3)
O4—C81.227 (3)C3—H3A0.9700
N1—C21.318 (3)C3—H3B0.9700
N1—N21.357 (3)C5—H50.9300
N1—C31.459 (3)C6—H60.9300
N2—C11.316 (3)C7—C81.531 (3)
N3—C21.329 (3)C7—H7A0.9700
N3—C11.355 (3)C7—H7B0.9700
O1i—Zn—O3ii98.54 (6)N1—C2—H2125.1
O1i—Zn—N6112.87 (7)N3—C2—H2125.1
O3ii—Zn—N6124.72 (7)N1—C3—C4111.80 (18)
O1i—Zn—N3108.45 (7)N1—C3—H3A109.3
O3ii—Zn—N3103.90 (7)C4—C3—H3A109.3
N6—Zn—N3107.23 (7)N1—C3—H3B109.3
C4—O1—Zniii114.91 (14)C4—C3—H3B109.3
C8—O3—Zniv105.24 (14)H3A—C3—H3B107.9
C2—N1—N2110.52 (18)O2—C4—O1126.0 (2)
C2—N1—C3128.6 (2)O2—C4—C3120.6 (2)
N2—N1—C3120.51 (19)O1—C4—C3113.40 (19)
C1—N2—N1102.41 (18)N5—C5—N6114.1 (2)
C2—N3—C1103.11 (19)N5—C5—H5122.9
C2—N3—Zn127.61 (15)N6—C5—H5122.9
C1—N3—Zn129.27 (15)N4—C6—N6109.70 (19)
C6—N4—N5110.29 (18)N4—C6—H6125.2
C6—N4—C7128.2 (2)N6—C6—H6125.2
N5—N4—C7120.56 (18)N4—C7—C8109.48 (17)
C5—N5—N4102.52 (18)N4—C7—H7A109.8
C6—N6—C5103.36 (18)C8—C7—H7A109.8
C6—N6—Zn124.11 (15)N4—C7—H7B109.8
C5—N6—Zn132.40 (15)C8—C7—H7B109.8
N2—C1—N3114.2 (2)H7A—C7—H7B108.2
N2—C1—H1122.9O4—C8—O3124.2 (2)
N3—C1—H1122.9O4—C8—C7118.7 (2)
N1—C2—N3109.7 (2)O3—C8—C7117.06 (19)
C2—N1—N2—C1−1.5 (3)C1—N3—C2—N1−0.7 (2)
C3—N1—N2—C1−175.3 (2)Zn—N3—C2—N1−179.62 (14)
O1i—Zn—N3—C2148.06 (18)C2—N1—C3—C4−82.7 (3)
O3ii—Zn—N3—C243.95 (19)N2—N1—C3—C489.9 (2)
N6—Zn—N3—C2−89.77 (19)Zniii—O1—C4—O2−3.3 (3)
O1i—Zn—N3—C1−30.5 (2)Zniii—O1—C4—C3179.67 (15)
O3ii—Zn—N3—C1−134.6 (2)N1—C3—C4—O213.0 (3)
N6—Zn—N3—C191.6 (2)N1—C3—C4—O1−169.84 (19)
C6—N4—N5—C5−1.4 (2)N4—N5—C5—N60.9 (3)
C7—N4—N5—C5−171.21 (18)C6—N6—C5—N50.0 (3)
O1i—Zn—N6—C666.44 (18)Zn—N6—C5—N5−175.96 (16)
O3ii—Zn—N6—C6−174.32 (15)N5—N4—C6—N61.5 (2)
N3—Zn—N6—C6−52.92 (18)C7—N4—C6—N6170.30 (18)
O1i—Zn—N6—C5−118.3 (2)C5—N6—C6—N4−0.9 (2)
O3ii—Zn—N6—C50.9 (2)Zn—N6—C6—N4175.46 (13)
N3—Zn—N6—C5122.3 (2)C6—N4—C7—C8−88.3 (3)
N1—N2—C1—N31.0 (3)N5—N4—C7—C879.5 (2)
C2—N3—C1—N2−0.2 (3)Zniv—O3—C8—O4−7.6 (3)
Zn—N3—C1—N2178.63 (16)Zniv—O3—C8—C7170.28 (16)
N2—N1—C2—N31.4 (3)N4—C7—C8—O430.4 (3)
C3—N1—C2—N3174.63 (19)N4—C7—C8—O3−147.6 (2)

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+2, y+1/2, −z+1/2; (iv) −x+1, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O4ii0.932.623.212 (3)122
C5—H5···O1v0.932.463.265 (3)145
C7—H7A···O4vi0.972.603.165 (3)118

Symmetry codes: (ii) −x+1, y+1/2, −z+1/2; (v) x−1, −y+1/2, z−1/2; (vi) x, −y−1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2113).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dixon, F. M., Eisenberg, A. H., Farrell, J. R., Mirkin, C. A., Liable-Sands, L. M. & Rheingold, A. L. (2000). Inorg. Chem.39, 3432–3433. [PubMed]
  • Fujita, M., Aoyagi, M., Ibukuro, F., Ogura, K. & Yamaguchi, K. (1998). J. Am. Chem. Soc.120, 611–612.
  • Ouellette, W., Prosvirin, A. V., Chieffo, V., Dunbar, K. R., Hudson, B. & Zubieta, J. (2006). Inorg. Chem.45, 9346–9366. [PubMed]
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xie, L. X., Ning, A. M. & Li, X. (2009). J. Coord. Chem.62, 1604–1612.
  • Zaderenko, P., Gil, M. S., Ballesteros, P. & Cerdan, S. (1994). J. Org. Chem.59 6268–6273.
  • Zhou, X. Y., Huang, Y. Q. & Sun, W. L. (2009). Inorg. Chim. Acta, 362, 1399–1404.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography