PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2899.
Published online 2009 October 28. doi:  10.1107/S1600536809044134
PMCID: PMC2971391

N′-[(E)-4-Hydr­oxy-3-methoxy­benzyl­idene]pyridine-4-carbohydrazide

Abstract

In the title compound, C14H13N3O3, the two six-membered rings are oriented at a dihedral angle of 15.17 (11)° and an intra­molecular O—H(...)O hydrogen bond occurs. In the crystal, mol­ecules inter­act by way of N—H(...)O, O—H(...)N and C—H(...)O hydrogen bonds, thereby generating S(5) chain and R 2 1(7) ring motifs.

Related literature

For related structures, see: Liu & Shi (2007 [triangle]); Shi et al. (2007 [triangle]); Shafiq et al. (2009 [triangle]). For graph-set theory, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2899-scheme1.jpg

Experimental

Crystal data

  • C14H13N3O3
  • M r = 271.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2899-efi1.jpg
  • a = 14.8543 (10) Å
  • b = 12.4943 (9) Å
  • c = 7.7162 (5) Å
  • β = 116.716 (2)°
  • V = 1279.20 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 K
  • 0.32 × 0.14 × 0.10 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.973, T max = 0.984
  • 7060 measured reflections
  • 1613 independent reflections
  • 1431 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.086
  • S = 1.04
  • 1613 reflections
  • 183 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809044134/hb5177sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044134/hb5177Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AH gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 063–121531-PS3–127).

supplementary crystallographic information

Comment

We have reported the crystal structures of (II) N'-[(E)-(4-Hydroxy-3-methoxyphenyl)methylidene]benzohydrazide (Shafiq et al., 2009). The title compound (I, Fig. 1), has been prepared in continuation of synthesizing hydrazide derivatives.

The crystal structure of (III) N'-(4-Hydroxy-3-methoxybenzylidene)isonicotinohydrazide monohydrate (Shi et al., 2007) and (IV) N'-(4-Hydroxy-3-methoxybenzylidene)isonicotinohydrazide methanol solvate (Liu & Shi, 2007) have also been reported. The title compound differs from (III) and (IV) as there is no solvate.

In the title compound the pyridine ring A (C1–C3/N1/C4/C5) and the benzene ring of vanilline B (C8—C13) are planar with a maximum r. m. s. deviations of 0.0061 and 0.0122 Å respectively, from their mean square planes. The dihedral angle between A/B is 15.17 (11)°. The intramolecular H-bonding of O—H···O type completes S(5) ring motif (Bernstein et al., 1995). There also exist R21(7) ring motif due to intermolecular H-bondings of C—H···O and N—H···O type (Table 1, Fig. 2). The molecules are stabilized in the form of two dimensional polymeric sheets owing to intermolecular H-bondings of O—H···N type (Fig. 2).

Experimental

To a hot stirred solution of isoniazid (1.37 g, 0.01 mol) in ethanol (15 ml) was added vanillin (1.52 g, 0.01 mol). The resultant mixture was then heated under reflux. After an hour precipitates were formed. The reaction mixture was further heated about 30 min for the completion of the reaction which was monitored through TLC. The reaction mixture was cooled to room temperature, filtered and washed with hot ethanol. Yellow needles of (I) were obtained by recrystallization of the crude product in 1,4-dioxan:ethanol (1:1) after two days.

Refinement

In the absence of significant anomalous dispersion effects, Friedel pairs were averaged before refinement.

The H-atoms were positioned geometrically (O–H = 0.82 Å, N–H = 0.86 Å, C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Figures

Fig. 1.
View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by spheres of arbitrary radius. The dotted line represent the intramolecular H-bondings.
Fig. 2.
The partial packing of (I), which shows that molecules form two dimensional polymeric chains.

Crystal data

C14H13N3O3F(000) = 568
Mr = 271.27Dx = 1.409 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1613 reflections
a = 14.8543 (10) Åθ = 2.2–28.7°
b = 12.4943 (9) ŵ = 0.10 mm1
c = 7.7162 (5) ÅT = 296 K
β = 116.716 (2)°Needle, yellow
V = 1279.20 (15) Å30.32 × 0.14 × 0.10 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer1613 independent reflections
Radiation source: fine-focus sealed tube1431 reflections with I > 2σ(I)
graphiteRint = 0.028
Detector resolution: 7.40 pixels mm-1θmax = 28.7°, θmin = 2.2°
ω scansh = −17→19
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −16→16
Tmin = 0.973, Tmax = 0.984l = −10→5
7060 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0491P)2 + 0.2451P] where P = (Fo2 + 2Fc2)/3
1613 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.16 e Å3
2 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.20978 (12)−0.14131 (15)0.1499 (2)0.0464 (5)
O20.74733 (14)0.23723 (14)0.7114 (3)0.0495 (5)
O30.71022 (13)0.02563 (13)0.6995 (3)0.0462 (5)
N1−0.10456 (14)−0.14377 (17)−0.4734 (3)0.0415 (6)
N20.24963 (13)−0.01999 (16)−0.0200 (2)0.0357 (5)
N30.34327 (13)−0.00082 (17)0.1376 (3)0.0371 (5)
C10.08684 (14)−0.10723 (18)−0.1727 (3)0.0302 (6)
C20.03464 (17)−0.2001 (2)−0.1794 (3)0.0400 (7)
C3−0.06004 (17)−0.2154 (2)−0.3320 (4)0.0455 (8)
C4−0.05475 (16)−0.0540 (2)−0.4634 (3)0.0387 (6)
C50.04083 (16)−0.03215 (18)−0.3174 (3)0.0342 (6)
C60.18841 (15)−0.09215 (18)−0.0012 (3)0.0317 (6)
C70.38334 (15)0.08629 (19)0.1254 (3)0.0355 (6)
C80.48092 (15)0.12099 (18)0.2766 (3)0.0322 (6)
C90.54708 (16)0.05029 (18)0.4162 (3)0.0338 (6)
C100.63784 (15)0.08723 (18)0.5602 (3)0.0320 (6)
C110.66190 (15)0.19614 (18)0.5701 (3)0.0318 (6)
C120.59690 (16)0.26504 (19)0.4295 (3)0.0353 (6)
C130.50728 (15)0.22751 (19)0.2826 (3)0.0360 (6)
C140.70271 (18)−0.08742 (19)0.6725 (4)0.0424 (7)
H20.06282−0.25144−0.082490.0480*
H2A0.231750.01414−0.127200.0428*
H2B0.779670.189450.786400.0594*
H3−0.09420−0.27850−0.336360.0546*
H4−0.08569−0.00289−0.559790.0465*
H50.073250.03162−0.316950.0411*
H70.349700.129470.016960.0425*
H90.53013−0.021630.412310.0405*
H120.613410.337100.433420.0424*
H130.464570.274310.187440.0432*
H14A0.70409−0.104980.552540.0636*
H14B0.64062−0.112050.668590.0636*
H14C0.75836−0.121400.778000.0636*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0372 (9)0.0570 (11)0.0298 (8)−0.0070 (8)0.0015 (7)0.0075 (7)
O20.0341 (8)0.0373 (9)0.0468 (9)−0.0080 (7)−0.0086 (7)0.0022 (8)
O30.0347 (8)0.0346 (9)0.0433 (9)−0.0031 (7)−0.0056 (7)0.0066 (7)
N10.0238 (8)0.0486 (12)0.0369 (10)−0.0013 (8)0.0001 (7)−0.0017 (8)
N20.0252 (9)0.0448 (11)0.0234 (8)−0.0053 (8)−0.0013 (7)0.0011 (7)
N30.0233 (8)0.0481 (11)0.0253 (8)−0.0042 (8)−0.0021 (7)−0.0012 (8)
C10.0226 (9)0.0371 (11)0.0235 (9)−0.0011 (8)0.0037 (8)−0.0041 (8)
C20.0317 (12)0.0392 (12)0.0366 (11)−0.0011 (9)0.0042 (10)0.0068 (10)
C30.0302 (12)0.0441 (14)0.0484 (13)−0.0087 (10)0.0054 (10)0.0025 (11)
C40.0258 (10)0.0455 (13)0.0316 (10)0.0017 (9)0.0011 (8)0.0037 (9)
C50.0260 (10)0.0387 (12)0.0295 (10)−0.0028 (9)0.0050 (8)−0.0021 (9)
C60.0242 (9)0.0376 (12)0.0240 (9)0.0021 (8)0.0027 (8)−0.0028 (8)
C70.0257 (10)0.0421 (12)0.0281 (10)−0.0004 (9)0.0028 (8)0.0005 (9)
C80.0230 (9)0.0403 (12)0.0269 (9)−0.0028 (9)0.0055 (8)−0.0015 (9)
C90.0280 (10)0.0311 (11)0.0327 (10)−0.0059 (8)0.0052 (8)0.0006 (8)
C100.0258 (9)0.0326 (11)0.0291 (9)−0.0010 (8)0.0048 (8)0.0027 (8)
C110.0242 (9)0.0343 (11)0.0296 (10)−0.0037 (8)0.0055 (8)−0.0018 (8)
C120.0323 (11)0.0304 (11)0.0358 (11)−0.0033 (9)0.0087 (9)−0.0007 (9)
C130.0295 (11)0.0387 (12)0.0305 (10)0.0035 (9)0.0053 (9)0.0039 (9)
C140.0352 (12)0.0342 (12)0.0485 (13)0.0013 (10)0.0105 (10)0.0065 (10)

Geometric parameters (Å, °)

O1—C61.227 (3)C8—C131.382 (3)
O2—C111.349 (3)C8—C91.398 (3)
O3—C101.366 (3)C9—C101.385 (3)
O3—C141.425 (3)C10—C111.400 (3)
O2—H2B0.8200C11—C121.382 (3)
N1—C31.334 (3)C12—C131.386 (3)
N1—C41.327 (3)C2—H20.9300
N2—C61.334 (3)C3—H30.9300
N2—N31.396 (3)C4—H40.9300
N3—C71.264 (3)C5—H50.9300
N2—H2A0.8600C7—H70.9300
C1—C51.381 (3)C9—H90.9300
C1—C21.384 (3)C12—H120.9300
C1—C61.506 (3)C13—H130.9300
C2—C31.383 (4)C14—H14A0.9600
C4—C51.386 (3)C14—H14B0.9600
C7—C81.459 (3)C14—H14C0.9600
C10—O3—C14117.5 (2)O2—C11—C10122.6 (2)
C11—O2—H2B109.00C10—C11—C12119.5 (2)
C3—N1—C4117.5 (2)C11—C12—C13120.5 (2)
N3—N2—C6118.82 (17)C8—C13—C12120.5 (2)
N2—N3—C7113.6 (2)C1—C2—H2120.00
C6—N2—H2A121.00C3—C2—H2120.00
N3—N2—H2A121.00N1—C3—H3119.00
C2—C1—C5118.3 (2)C2—C3—H3119.00
C2—C1—C6117.45 (19)N1—C4—H4118.00
C5—C1—C6124.2 (2)C5—C4—H4118.00
C1—C2—C3119.1 (2)C1—C5—H5121.00
N1—C3—C2123.0 (2)C4—C5—H5121.00
N1—C4—C5123.7 (2)N3—C7—H7119.00
C1—C5—C4118.5 (2)C8—C7—H7119.00
O1—C6—N2123.0 (2)C8—C9—H9120.00
N2—C6—C1116.85 (18)C10—C9—H9120.00
O1—C6—C1120.1 (2)C11—C12—H12120.00
N3—C7—C8121.9 (2)C13—C12—H12120.00
C7—C8—C13118.5 (2)C8—C13—H13120.00
C7—C8—C9122.0 (2)C12—C13—H13120.00
C9—C8—C13119.5 (2)O3—C14—H14A109.00
C8—C9—C10120.1 (2)O3—C14—H14B109.00
O3—C10—C9125.6 (2)O3—C14—H14C109.00
O3—C10—C11114.4 (2)H14A—C14—H14B109.00
C9—C10—C11120.0 (2)H14A—C14—H14C109.00
O2—C11—C12118.0 (2)H14B—C14—H14C110.00
C14—O3—C10—C914.0 (4)N1—C4—C5—C1−0.7 (4)
C14—O3—C10—C11−165.5 (2)N3—C7—C8—C916.8 (4)
C4—N1—C3—C2−0.6 (4)N3—C7—C8—C13−162.1 (2)
C3—N1—C4—C51.3 (4)C7—C8—C9—C10−178.3 (2)
C6—N2—N3—C7−162.0 (2)C13—C8—C9—C100.6 (4)
N3—N2—C6—O11.4 (3)C7—C8—C13—C12176.7 (2)
N3—N2—C6—C1177.92 (19)C9—C8—C13—C12−2.3 (4)
N2—N3—C7—C8179.5 (2)C8—C9—C10—O3−177.3 (2)
C5—C1—C2—C31.5 (4)C8—C9—C10—C112.2 (4)
C6—C1—C2—C3178.3 (2)O3—C10—C11—O2−3.1 (3)
C2—C1—C5—C4−0.8 (3)O3—C10—C11—C12176.2 (2)
C6—C1—C5—C4−177.4 (2)C9—C10—C11—O2177.4 (2)
C2—C1—C6—O1−21.5 (3)C9—C10—C11—C12−3.4 (4)
C2—C1—C6—N2161.9 (2)O2—C11—C12—C13−179.0 (2)
C5—C1—C6—O1155.1 (2)C10—C11—C12—C131.7 (4)
C5—C1—C6—N2−21.5 (3)C11—C12—C13—C81.1 (4)
C1—C2—C3—N1−0.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2B···O30.822.252.694 (2)114
N2—H2A···O1i0.862.253.089 (2)164
O2—H2B···N1ii0.821.962.703 (3)150
C5—H5···O1i0.932.553.410 (3)153

Symmetry codes: (i) x, −y, z−1/2; (ii) x+1, −y, z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5177).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555-1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Liu, X. & Shi, X.-F. (2007). Acta Cryst. E63, o4807.
  • Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2898. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, X.-F., He, L., Ma, G.-Z. & Yuan, C.-C. (2007). Acta Cryst. E63, o1119–o1120.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography