PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1469.
Published online 2009 October 31. doi:  10.1107/S1600536809043736
PMCID: PMC2971390

Bis(hexa­methyl­enetetra­mine)bis­(tri­chloro­acetato)copper(II)

Abstract

In the title compound, [Cu(C2Cl3O2)2(C6H12N4)2], the CuII ion (site symmetry 2) is coordinated by two trichloro­acetate anions and two hexa­methyl­enetetra­mine mol­ecules, resulting in a distorted CuN2O2 geometry that is inter­mediate between tetra­hedral and square planar. The Cl atoms are disordered over two sets of sites, with relative occupancies of 0.749 (7) and 0.251 (7). In the crystal, the packing is consolidated by inter­molecular C—H(...)O inter­actions.

Related literature

For background to coordination networks, see: Chen et al. (2001 [triangle]). For a related structure, see: Moncol et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1469-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2Cl3O2)2(C6H12N4)2]
  • M r = 668.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1469-efi1.jpg
  • a = 23.291 (5) Å
  • b = 6.4759 (13) Å
  • c = 20.702 (4) Å
  • β = 121.36 (3)°
  • V = 2666.3 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.46 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: none
  • 12444 measured reflections
  • 3048 independent reflections
  • 2740 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.184
  • S = 1.09
  • 3048 reflections
  • 187 parameters
  • 78 restraints
  • H-atom parameters constrained
  • Δρmax = 1.52 e Å−3
  • Δρmin = −0.98 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043736/hb5145sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043736/hb5145Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the Natural Science Foundation of Shandong Province (No. Y2008B30).

supplementary crystallographic information

Comment

Metal-organic framework coordination polymers have attracted tremendous attention because of their molecular topologies and their potentially useful ionexchange,adsorption,catalytic and magnetic properties. Much of this work has been concerned (e.g. Chen et al., 2001). In order to search for new complexes of this type, we synthesized the title compound, (I), and report its crystal structure here.

The title structure contains one copper(II), two N atoms of the hexamethylenetetramine ligands and two O atoms of trichloroacetate anions. The coordination sphere of the copper(II) ion is best described as a seriously distorted tetrahedral. The Cu—O and Cu—N bond lengths are in agreement with those reported recently (Moncol et al., 2007). The Cl atoms are disordered over two sites, with relatives occupancies 0.749 (7) and 0.251 (7).The crystal packing is stabilized by intra- and intermolecular C—H···O hydrogen interaction (Table 1).

Experimental

The title compound was obtained by adding hexamethylenetetramine (2 mmol) dropwise to a solution of trichloroacetatocopper(II) (1 mmol) in ethanol (30 ml) under stirred for 1 h at room temperature. A green solution was formed and after a few days block crystals precipitated.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H and N—H distances of 0.93–0.96 and 0.86 Å, and with Uiso = 1.2Ueq.

Figures

Fig. 1.
The structure of (I) showing 30% probability displacement ellipsoids. Atoms with suffix A are generated by the symmetry operation (–x, y, 1/2–z).

Crystal data

[Cu(C2Cl3O2)2(C6H12N4)2]F(000) = 1356
Mr = 668.67Dx = 1.666 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 23.291 (5) ÅCell parameters from 2740 reflections
b = 6.4759 (13) Åθ = 3.3–27.5°
c = 20.702 (4) ŵ = 1.46 mm1
β = 121.36 (3)°T = 293 K
V = 2666.3 (9) Å3Block, green
Z = 40.30 × 0.20 × 0.15 mm

Data collection

Bruker SMART CCD diffractometer2740 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
graphiteθmax = 27.5°, θmin = 3.3°
Detector resolution: 3 pixels mm-1h = −30→30
ω scansk = −7→8
12444 measured reflectionsl = −26→26
3048 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.1275P)2 + 3.9764P] where P = (Fo2 + 2Fc2)/3
3048 reflections(Δ/σ)max = 0.042
187 parametersΔρmax = 1.52 e Å3
78 restraintsΔρmin = −0.98 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.00000.79415 (8)0.25000.0315 (2)
O10.06660 (12)0.7420 (4)0.35558 (14)0.0428 (6)
O20.01619 (16)0.4397 (5)0.33908 (17)0.0669 (9)
N10.07476 (12)0.8907 (4)0.23307 (14)0.0303 (5)
N20.15738 (18)1.1697 (5)0.2701 (2)0.0483 (7)
N30.10588 (16)1.0194 (5)0.14402 (17)0.0445 (7)
N40.18698 (16)0.8189 (5)0.2547 (2)0.0477 (8)
C10.10233 (18)1.0882 (5)0.27694 (19)0.0396 (7)
H1A0.06671.19000.25840.047*
H1B0.11831.06290.32990.047*
C20.1318 (2)1.2073 (6)0.1894 (3)0.0499 (9)
H2A0.09621.30960.17040.060*
H2B0.16781.26290.18400.060*
C30.1605 (2)0.8664 (7)0.1743 (2)0.0519 (9)
H3A0.19670.91860.16870.062*
H3B0.14390.74020.14490.062*
C40.13189 (18)0.7387 (5)0.2620 (2)0.0406 (7)
H4A0.14850.70850.31470.049*
H4B0.11560.61080.23370.049*
C50.21037 (19)1.0132 (7)0.2968 (2)0.0547 (10)
H5A0.22770.98610.35000.066*
H5B0.24701.06700.29240.066*
C60.05198 (17)0.9380 (6)0.15232 (18)0.0410 (7)
H6A0.03460.81290.12250.049*
H6B0.01571.03790.13280.049*
C70.1155 (2)0.5072 (6)0.45812 (19)0.0579 (10)
C80.05989 (16)0.5630 (6)0.37587 (17)0.0378 (7)
Cl10.1084 (2)0.6786 (5)0.51998 (15)0.0872 (9)0.749 (7)
Cl20.1139 (3)0.2478 (4)0.48019 (19)0.1149 (15)0.749 (7)
Cl30.19694 (13)0.5452 (9)0.47005 (18)0.1191 (16)0.749 (7)
Cl1'0.1398 (7)0.7198 (12)0.5194 (5)0.102 (2)0.251 (7)
Cl2'0.0839 (6)0.2990 (15)0.4873 (5)0.106 (2)0.251 (7)
Cl3'0.1851 (4)0.430 (2)0.4518 (6)0.133 (3)0.251 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0256 (3)0.0403 (4)0.0277 (3)0.0000.0133 (2)0.000
O10.0349 (12)0.0555 (14)0.0316 (12)−0.0009 (10)0.0129 (10)0.0104 (10)
O20.0620 (18)0.0575 (17)0.0507 (16)−0.0134 (14)0.0079 (14)0.0011 (14)
N10.0288 (11)0.0309 (12)0.0326 (12)0.0013 (9)0.0170 (10)0.0000 (10)
N20.0535 (19)0.0428 (15)0.0538 (18)−0.0155 (14)0.0316 (16)−0.0081 (14)
N30.0491 (17)0.0516 (17)0.0424 (15)−0.0001 (13)0.0304 (13)0.0039 (13)
N40.0360 (15)0.0541 (18)0.061 (2)0.0086 (12)0.0305 (15)0.0094 (15)
C10.0476 (18)0.0345 (15)0.0432 (17)−0.0034 (13)0.0282 (15)−0.0068 (14)
C20.059 (2)0.0409 (19)0.058 (2)−0.0043 (15)0.037 (2)0.0067 (16)
C30.059 (2)0.056 (2)0.061 (2)0.0055 (19)0.046 (2)0.0001 (19)
C40.0395 (17)0.0361 (15)0.054 (2)0.0087 (13)0.0295 (16)0.0081 (15)
C50.0361 (18)0.071 (3)0.053 (2)−0.0117 (17)0.0208 (16)0.0022 (19)
C60.0376 (16)0.0516 (19)0.0336 (15)−0.0027 (14)0.0185 (13)−0.0008 (14)
C70.064 (2)0.058 (2)0.0289 (16)0.0017 (19)0.0086 (16)0.0075 (16)
C80.0346 (15)0.0496 (18)0.0253 (13)0.0018 (13)0.0129 (12)0.0010 (13)
Cl10.115 (2)0.0970 (16)0.0377 (8)0.0104 (14)0.0319 (13)−0.0064 (9)
Cl20.147 (3)0.0608 (12)0.0681 (13)0.0104 (14)0.0082 (17)0.0246 (11)
Cl30.0462 (11)0.208 (5)0.0721 (16)0.0175 (17)0.0089 (11)0.030 (2)
Cl1'0.131 (5)0.090 (3)0.036 (2)0.008 (3)0.010 (3)−0.011 (2)
Cl2'0.148 (5)0.064 (3)0.063 (3)−0.009 (3)0.024 (3)0.026 (3)
Cl3'0.053 (3)0.196 (6)0.092 (4)0.044 (4)−0.001 (3)0.005 (4)

Geometric parameters (Å, °)

Cu1—O11.941 (3)C1—H1B0.9700
Cu1—O1i1.941 (3)C2—H2A0.9700
Cu1—N1i2.045 (2)C2—H2B0.9700
Cu1—N12.045 (2)C3—H3A0.9700
O1—C81.270 (4)C3—H3B0.9700
O2—C81.203 (5)C4—H4A0.9700
N1—C61.499 (4)C4—H4B0.9700
N1—C41.506 (4)C5—H5A0.9700
N1—C11.505 (4)C5—H5B0.9700
N2—C11.460 (5)C6—H6A0.9700
N2—C51.465 (6)C6—H6B0.9700
N2—C21.473 (6)C7—C81.553 (5)
N3—C61.452 (4)C7—Cl21.747 (5)
N3—C21.462 (5)C7—Cl1'1.754 (7)
N3—C31.470 (5)C7—Cl3'1.764 (7)
N4—C41.463 (5)C7—Cl11.766 (5)
N4—C51.465 (6)C7—Cl2'1.786 (7)
N4—C31.477 (5)C7—Cl31.797 (5)
C1—H1A0.9700
O1—Cu1—O1i159.95 (17)N4—C4—H4A109.3
O1—Cu1—N1i96.49 (11)N1—C4—H4A109.3
O1i—Cu1—N1i89.63 (10)N4—C4—H4B109.3
O1—Cu1—N189.63 (10)N1—C4—H4B109.3
O1i—Cu1—N196.49 (11)H4A—C4—H4B108.0
N1i—Cu1—N1144.38 (14)N2—C5—N4112.9 (3)
C8—O1—Cu1111.6 (2)N2—C5—H5A109.0
C6—N1—C4107.7 (2)N4—C5—H5A109.0
C6—N1—C1107.0 (3)N2—C5—H5B109.0
C4—N1—C1107.7 (3)N4—C5—H5B109.0
C6—N1—Cu1114.51 (19)H5A—C5—H5B107.8
C4—N1—Cu1112.75 (19)N3—C6—N1112.3 (3)
C1—N1—Cu1106.88 (18)N3—C6—H6A109.1
C1—N2—C5108.8 (3)N1—C6—H6A109.1
C1—N2—C2108.3 (3)N3—C6—H6B109.1
C5—N2—C2107.9 (3)N1—C6—H6B109.1
C6—N3—C2108.7 (3)H6A—C6—H6B107.9
C6—N3—C3108.3 (3)C8—C7—Cl2113.0 (3)
C2—N3—C3108.1 (3)C8—C7—Cl1'112.4 (4)
C4—N4—C5108.6 (3)Cl2—C7—Cl1'127.5 (4)
C4—N4—C3108.4 (3)C8—C7—Cl3'105.0 (4)
C5—N4—C3107.5 (3)Cl2—C7—Cl3'83.9 (5)
N2—C1—N1111.6 (3)Cl1'—C7—Cl3'108.3 (5)
N2—C1—H1A109.3C8—C7—Cl1108.0 (3)
N1—C1—H1A109.3Cl2—C7—Cl1113.0 (3)
N2—C1—H1B109.3Cl1'—C7—Cl125.7 (4)
N1—C1—H1B109.3Cl3'—C7—Cl1131.9 (4)
H1A—C1—H1B108.0C8—C7—Cl2'106.9 (4)
N3—C2—N2112.3 (3)Cl2—C7—Cl2'27.9 (4)
N3—C2—H2A109.2Cl1'—C7—Cl2'112.5 (5)
N2—C2—H2A109.2Cl3'—C7—Cl2'111.6 (5)
N3—C2—H2B109.2Cl1—C7—Cl2'91.0 (4)
N2—C2—H2B109.2C8—C7—Cl3109.7 (3)
H2A—C2—H2B107.9Cl2—C7—Cl3105.1 (3)
N3—C3—N4112.4 (3)Cl1'—C7—Cl382.7 (5)
N3—C3—H3A109.1Cl3'—C7—Cl326.5 (4)
N4—C3—H3A109.1Cl1—C7—Cl3107.8 (3)
N3—C3—H3B109.1Cl2'—C7—Cl3130.4 (5)
N4—C3—H3B109.1O2—C8—O1127.3 (3)
H3A—C3—H3B107.8O2—C8—C7119.2 (3)
N4—C4—N1111.6 (3)O1—C8—C7113.5 (3)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···O2ii0.972.523.416 (5)153

Symmetry codes: (ii) −x, y+1, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5145).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, B., Eddaoudi, M., Hyde, S. T., O’Keeffe, M. & Yaghi, O. M. (2001). Science, 291, 1021–1023. [PubMed]
  • Moncol, J., Maroszova, J., Peter, L., Mark, H., Marian, V., Morris, H., Svorec, J., Melnik, M., Mazur, M. & Koman, M. (2007). Inorg. Chim. Acta, 360, 3213–3225.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography