PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1395.
Published online 2009 October 17. doi:  10.1107/S1600536809042160
PMCID: PMC2971389

Tetra­ethyl­ammonium tricarbonyl­chlorido­(pyrazine-2-carboxyl­ato-N 1,O)rhenate(I)

Abstract

In the title complex, (C8H20N)[Re(C5H3N2O2)Cl(CO)3], the ReI atom is coordinated facially by three carbonyl groups; the bidentate pyrazine­carboxyl­ato ligand and a chlorine atom complete the distorted octa­hedral coordination.

Related literature

For synthetic background, see: Alberto et al. (1996 [triangle]). For related structures, see: Schutte et al. (2008 [triangle]); Kemp (2006 [triangle]); Wang et al. (2003 [triangle]); Alvarez et al. (2007 [triangle]); Brasey et al. (2004 [triangle]); Mundwiler et al. (2004 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1395-scheme1.jpg

Experimental

Crystal data

  • (C8H20N)[Re(C5H3N2O2)Cl(CO)3]
  • M r = 559.02
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1395-efi1.jpg
  • a = 7.927 (5) Å
  • b = 22.278 (5) Å
  • c = 10.903 (5) Å
  • β = 90.506 (5)°
  • V = 1925.4 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.48 mm−1
  • T = 100 K
  • 0.27 × 0.20 × 0.11 mm

Data collection

  • Bruker X8 APEXII 4K Kappa CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.273, T max = 0.539
  • 32482 measured reflections
  • 4781 independent reflections
  • 4121 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.098
  • S = 1.18
  • 4781 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 1.05 e Å−3
  • Δρmin = −1.38 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809042160/pv2218sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042160/pv2218Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Necsa and the UFS for funding and permission to publish this work.

supplementary crystallographic information

Comment

The title complex, (I), forms a part of an ongoing investigation of the structural and kinetic behaviour of fac-Re(CO)3 compounds (Schutte et al., 2008). It crystallized as an anionic ReI compound and one tetraethylammonium counter ion in the asymmetric unit (Fig. 1). The Re—CO bond distances are well within the normal range (Allen et al., 1987). The small bite angle O4—Re1—N1 might be a reason for the slightly distorted octahedral geometry around the metal centre. There are no classical hydrogen bonds in the structure.

Experimental

ReCl3(CO)3 (64.2 mg, 0.01 mmol) was suspended in 10 ml methanol. The solution was heated to reflux and 2-pyrazinecarboxylic acid (13.1 mg, 0.01 mmol) dissolved in ca 5 ml methanol was added whilst stirring. A bright yellow colour resulted on addition of the ligand to the metal. K2CO3 7.1 mg (0.005 mmol) was added to the solution. The reaction solution was refluxed for 6 h after which the solvent volume was decreased on a rotovapor. The MeOH solution was layered with a minimal amount of diethyl ether and left to stand in a refrigerator. After a few days yellow crystals were formed.

Refinement

The methyl, methylene and aromatic H atoms were placed in geometrically idealized positions with C—H distances = 0.96, 0.97 and 0.96 Å, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(methyl-C) and 1.2Ueq(methylene and aromatic-C). The highest residual electron density was located 0.93 Å from H17C and was essentially meaningless.

Figures

Fig. 1.
A view of the title complex plotted with 50% probability displacement ellipsoids; hydrogen atoms have been omitted for clarity.

Crystal data

(C8H20N)[Re(C5H3N2O2)Cl(CO)3]F(000) = 1088
Mr = 559.02Dx = 1.929 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9901 reflections
a = 7.927 (5) Åθ = 2.7–28.3°
b = 22.278 (5) ŵ = 6.48 mm1
c = 10.903 (5) ÅT = 100 K
β = 90.506 (5)°Cuboid, yellow
V = 1925.4 (16) Å30.27 × 0.20 × 0.11 mm
Z = 4

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer4781 independent reflections
Radiation source: sealed tube4121 reflections with I > 2σ(I)
graphiteRint = 0.046
phi and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −10→9
Tmin = 0.273, Tmax = 0.539k = −29→29
32482 measured reflectionsl = −14→13

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.021w = 1/[σ2(Fo2) + (0.0591P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max = 0.001
S = 1.18Δρmax = 1.05 e Å3
4781 reflectionsΔρmin = −1.38 e Å3
235 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Re10.30393 (2)0.198197 (7)0.407485 (15)0.01064 (8)
Cl10.29768 (13)0.09512 (5)0.49378 (10)0.0154 (2)
C50.3651 (5)0.13259 (19)0.1726 (4)0.0117 (8)
O50.0904 (4)0.10473 (15)0.1121 (3)0.0186 (7)
N30.1752 (4)−0.07955 (16)0.2734 (3)0.0111 (7)
O40.1219 (4)0.16145 (14)0.2811 (3)0.0143 (7)
N20.6136 (5)0.10700 (19)0.0608 (4)0.0198 (9)
N10.4559 (5)0.15900 (16)0.2633 (3)0.0132 (8)
C140.1057 (5)−0.0443 (2)0.1656 (4)0.0146 (9)
H14B0.1568−0.00470.16660.018*
H14A0.1403−0.0640.09060.018*
C40.1762 (5)0.1323 (2)0.1880 (4)0.0131 (9)
C100.1294 (6)−0.0471 (2)0.3912 (4)0.0169 (9)
H10A0.1667−0.00580.38490.02*
H10B0.0075−0.04670.39830.02*
C15−0.0836 (6)−0.0368 (2)0.1619 (4)0.0182 (10)
H15B−0.1153−0.01380.09090.027*
H15C−0.1197−0.01640.23450.027*
H15A−0.1361−0.07560.15780.027*
C120.3647 (5)−0.0855 (2)0.2602 (4)0.0147 (9)
H12B0.4069−0.11060.32640.018*
H12A0.3875−0.10620.18380.018*
C170.1141 (6)−0.1786 (2)0.1620 (5)0.0215 (10)
H17B0.0637−0.21730.17390.032*
H17A0.231−0.18350.14180.032*
H17C0.0569−0.15810.09620.032*
C10.4817 (6)0.2209 (2)0.5162 (4)0.0160 (9)
C70.7019 (6)0.1324 (2)0.1527 (4)0.0187 (10)
H70.8190.13230.1490.022*
C160.0997 (6)−0.14213 (19)0.2785 (4)0.0139 (9)
H16A0.1545−0.16410.34450.017*
H16B−0.0188−0.13860.29880.017*
C130.4627 (6)−0.0272 (2)0.2612 (5)0.0228 (11)
H13C0.5808−0.03550.25250.034*
H13B0.4444−0.00670.33740.034*
H13A0.425−0.00230.19450.034*
C80.6250 (6)0.1586 (2)0.2526 (4)0.0167 (9)
H80.69130.17640.31340.02*
C60.4450 (6)0.1077 (2)0.0729 (4)0.0169 (9)
H60.37910.09060.01110.02*
C110.2032 (6)−0.0737 (2)0.5073 (4)0.0227 (11)
H11B0.1677−0.05040.57650.034*
H11A0.3241−0.07330.50280.034*
H11C0.1646−0.11430.51620.034*
C30.1409 (6)0.2291 (2)0.5218 (4)0.0148 (9)
O20.3224 (4)0.32482 (15)0.2989 (3)0.0206 (7)
O30.0411 (4)0.24882 (16)0.5855 (3)0.0215 (7)
O10.5931 (4)0.23294 (16)0.5808 (3)0.0241 (8)
C20.3140 (5)0.2765 (2)0.3371 (4)0.0139 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Re10.01130 (11)0.00960 (12)0.01101 (12)−0.00026 (6)−0.00005 (7)−0.00013 (6)
Cl10.0170 (5)0.0123 (5)0.0169 (5)−0.0006 (4)−0.0002 (4)0.0005 (4)
C50.013 (2)0.010 (2)0.012 (2)0.0021 (16)−0.0005 (16)0.0015 (16)
O50.0130 (16)0.0202 (19)0.0227 (17)−0.0029 (13)−0.0034 (13)−0.0071 (14)
N30.0113 (17)0.0110 (18)0.0110 (17)−0.0010 (14)0.0013 (13)0.0012 (14)
O40.0127 (15)0.0161 (17)0.0141 (15)−0.0004 (12)−0.0006 (12)−0.0029 (13)
N20.017 (2)0.026 (2)0.0168 (19)0.0039 (17)0.0031 (16)0.0009 (17)
N10.0121 (17)0.0103 (19)0.0172 (19)−0.0001 (14)0.0000 (14)0.0036 (15)
C140.015 (2)0.013 (2)0.015 (2)0.0012 (17)0.0014 (17)0.0052 (17)
C40.011 (2)0.013 (2)0.015 (2)0.0013 (16)0.0001 (16)0.0019 (17)
C100.014 (2)0.017 (2)0.019 (2)0.0022 (18)0.0026 (18)−0.0043 (19)
C150.015 (2)0.024 (3)0.016 (2)0.0029 (19)−0.0025 (17)0.0024 (19)
C120.010 (2)0.017 (2)0.018 (2)0.0019 (17)0.0027 (16)−0.0006 (18)
C170.023 (3)0.020 (3)0.022 (3)0.000 (2)0.002 (2)−0.005 (2)
C10.023 (2)0.009 (2)0.016 (2)0.0009 (18)0.0019 (18)−0.0015 (18)
C70.010 (2)0.026 (3)0.021 (2)0.0035 (18)0.0040 (17)0.006 (2)
C160.014 (2)0.010 (2)0.017 (2)−0.0034 (17)0.0005 (17)0.0017 (18)
C130.012 (2)0.022 (3)0.034 (3)−0.0006 (19)0.000 (2)0.004 (2)
C80.015 (2)0.018 (2)0.017 (2)0.0012 (18)−0.0034 (17)0.0026 (18)
C60.015 (2)0.019 (3)0.017 (2)−0.0002 (18)−0.0019 (17)0.0016 (18)
C110.024 (3)0.029 (3)0.015 (2)0.002 (2)−0.0004 (19)−0.005 (2)
C30.018 (2)0.012 (2)0.015 (2)−0.0024 (17)−0.0025 (18)0.0039 (18)
O20.0225 (18)0.0123 (17)0.0272 (19)−0.0016 (14)0.0033 (15)0.0027 (15)
O30.0279 (18)0.0198 (19)0.0170 (17)0.0012 (15)0.0096 (14)−0.0011 (14)
O10.0222 (18)0.021 (2)0.0284 (19)0.0010 (15)−0.0097 (15)−0.0060 (16)
C20.012 (2)0.018 (2)0.012 (2)0.0026 (17)0.0006 (16)−0.0006 (18)

Geometric parameters (Å, °)

Re1—C11.902 (5)C15—H15C0.96
Re1—C21.908 (5)C15—H15A0.96
Re1—C31.930 (5)C12—C131.514 (6)
Re1—O42.149 (3)C12—H12B0.97
Re1—N12.172 (4)C12—H12A0.97
Re1—Cl12.4822 (12)C17—C161.513 (6)
C5—N11.353 (6)C17—H17B0.96
C5—C61.379 (6)C17—H17A0.96
C5—C41.508 (6)C17—H17C0.96
O5—C41.231 (5)C1—O11.156 (5)
N3—C141.514 (5)C7—C81.383 (7)
N3—C121.517 (5)C7—H70.93
N3—C161.518 (5)C16—H16A0.97
N3—C101.521 (5)C16—H16B0.97
O4—C41.282 (5)C13—H13C0.96
N2—C71.342 (6)C13—H13B0.96
N2—C61.344 (6)C13—H13A0.96
N1—C81.347 (6)C8—H80.93
C14—C151.510 (6)C6—H60.93
C14—H14B0.97C11—H11B0.96
C14—H14A0.97C11—H11A0.96
C10—C111.510 (6)C11—H11C0.96
C10—H10A0.97C3—O31.145 (5)
C10—H10B0.97O2—C21.156 (6)
C15—H15B0.96
C1—Re1—C288.49 (19)H15B—C15—H15C109.5
C1—Re1—C389.99 (19)C14—C15—H15A109.5
C2—Re1—C387.95 (19)H15B—C15—H15A109.5
C1—Re1—O4172.22 (16)H15C—C15—H15A109.5
C2—Re1—O496.95 (16)C13—C12—N3115.6 (4)
C3—Re1—O495.74 (16)C13—C12—H12B108.4
C1—Re1—N198.34 (17)N3—C12—H12B108.4
C2—Re1—N192.94 (16)C13—C12—H12A108.4
C3—Re1—N1171.64 (16)N3—C12—H12A108.4
O4—Re1—N175.91 (13)H12B—C12—H12A107.4
C1—Re1—Cl191.55 (14)C16—C17—H17B109.5
C2—Re1—Cl1178.07 (14)C16—C17—H17A109.5
C3—Re1—Cl193.98 (13)H17B—C17—H17A109.5
O4—Re1—Cl182.82 (9)C16—C17—H17C109.5
N1—Re1—Cl185.15 (10)H17B—C17—H17C109.5
N1—C5—C6120.4 (4)H17A—C17—H17C109.5
N1—C5—C4116.3 (4)O1—C1—Re1177.5 (4)
C6—C5—C4123.3 (4)N2—C7—C8122.4 (4)
C14—N3—C12109.0 (3)N2—C7—H7118.8
C14—N3—C16111.4 (3)C8—C7—H7118.8
C12—N3—C16108.3 (3)C17—C16—N3115.4 (4)
C14—N3—C10108.7 (3)C17—C16—H16A108.4
C12—N3—C10111.5 (3)N3—C16—H16A108.4
C16—N3—C10108.0 (3)C17—C16—H16B108.4
C4—O4—Re1118.2 (3)N3—C16—H16B108.4
C7—N2—C6115.8 (4)H16A—C16—H16B107.5
C8—N1—C5117.2 (4)C12—C13—H13C109.5
C8—N1—Re1128.6 (3)C12—C13—H13B109.5
C5—N1—Re1114.1 (3)H13C—C13—H13B109.5
C15—C14—N3115.6 (4)C12—C13—H13A109.5
C15—C14—H14B108.4H13C—C13—H13A109.5
N3—C14—H14B108.4H13B—C13—H13A109.5
C15—C14—H14A108.4N1—C8—C7121.1 (4)
N3—C14—H14A108.4N1—C8—H8119.4
H14B—C14—H14A107.4C7—C8—H8119.4
O5—C4—O4126.7 (4)N2—C6—C5123.1 (4)
O5—C4—C5118.0 (4)N2—C6—H6118.5
O4—C4—C5115.3 (4)C5—C6—H6118.5
C11—C10—N3115.3 (4)C10—C11—H11B109.5
C11—C10—H10A108.4C10—C11—H11A109.5
N3—C10—H10A108.4H11B—C11—H11A109.5
C11—C10—H10B108.4C10—C11—H11C109.5
N3—C10—H10B108.4H11B—C11—H11C109.5
H10A—C10—H10B107.5H11A—C11—H11C109.5
C14—C15—H15B109.5O3—C3—Re1177.0 (4)
C14—C15—H15C109.5O2—C2—Re1177.3 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2218).

References

  • Alberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079–1083.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Alvarez, C. M., Garcia-Rodriguez, R. & Miguel, D. (2007). Dalton Trans. pp. 3546–3554. [PubMed]
  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Brasey, T., Buryak, A., Scopelliti, R. & Severin, K. (2004). Eur. J. Inorg. Chem. pp. 964–967.
  • Bruker (2004). SAINT-Plus, XPREPandSADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kemp, G. (2006). PhD thesis, University of Johannesburg, South Africa.
  • Mundwiler, S., Kundig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320–1328. [PubMed]
  • Schutte, M., Visser, H. G. & Roodt, A. (2008). Acta Cryst. E64, m1610–m1611. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta 355, 386–391.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography