PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2736.
Published online 2009 October 17. doi:  10.1107/S1600536809041002
PMCID: PMC2971386

2,2,6-Trimethyl-5-[2-(4-methyl­phen­yl)ethyn­yl]-4H-1,3-dioxin-4-one

Abstract

The 1,3-dioxin-4-one ring in the title compound, C16H16O3, is in a half-boat conformation with the quaternary O—C(CH3)2—O atom lying 0.546 (1) Å out of the plane defined by the remaining five atoms. The crystal structure is consolidated by C—H(...)O contacts that lead to supra­molecular layers.

Related literature

For background to potassium organotrifluoro­borate salts in organic synthesis, see: Caracelli et al. (2007 [triangle]); Stefani et al. (2007 [triangle]); Vieira et al. (2008 [triangle]). For related structures, see: Le & Pagenkopf (2004 [triangle]); Zukerman-Schpector et al. (2009 [triangle]). For conformational analysis, see: Cremer & Pople (1975 [triangle]); Iulek & Zukerman-Schpector (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2736-scheme1.jpg

Experimental

Crystal data

  • C16H16O3
  • M r = 256.29
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2736-efi1.jpg
  • a = 14.8486 (15) Å
  • b = 9.621 (1) Å
  • c = 18.9438 (18) Å
  • V = 2706.3 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100 K
  • 0.20 × 0.10 × 0.05 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.911, T max = 1
  • 32445 measured reflections
  • 2382 independent reflections
  • 1727 reflections with I > 2σ(I)
  • R int = 0.083

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.096
  • S = 1.04
  • 2382 reflections
  • 174 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041002/hg2577sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041002/hg2577Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank FAPESP [grant Nos. 07/59404-2 (HAS) and 08/02531-5 (JZ-S)], CNPq [grant Nos. 472237/2008-0 (IC), 300613/2007 (HAS), 307121/2006-0 (JZ-S)] and CAPES for financial support.

supplementary crystallographic information

Comment

The potential use of potassium organotrifluoroborate salts as intermediates in organic synthesis motivates continuing interest (Caracelli et al., 2007; Stefani et al., 2007; Vieira et al. 2008). As a part of on-going studies, the crystal structure of the title compound, (I), is reported herein, which was obtained by the Suzuki-Miyaura palladium-catalyzed cross-coupling reaction of 5-iodo-1,3-dioxin-4-one and a potassium alkynyltrifluoroborate salt.

The molecular structure of (I), Fig. 1, shows the 1,3-dioxin-4-one ring to adopt a half-boat conformation with the C12 atom being displaced 0.546 (1) Å out of the plane defined by the remaining five atoms. The ring-puckering parameters are q2 = 0.346 (2) Å, q3 = 0.182 (2) Å, Q = 0.391 (2) Å, and [var phi]2 = 299.3 (3)° (Cremer & Pople, 1975; Iulek & Zukerman-Schpector, 1997). A similar conformation has been observed in related structures containing the 1,3-dioxin-4-one ring (Le & Pagenkopf, 2004; Zukerman-Schpector et al., 2009). The presence of C—H···O contacts involving the bifurcated carbonyl-O1 atom interacting with two different molecules leads to a layer architecture in the ab plane, Fig. 2. These stack along the c direction to form the crystal structure.

Experimental

The treatment of potassium p-tolylethynyltrifluoroborate (244 mg, 1.1 equiv) with K2CO3 (2 mmol, 276 mg) in 3 ml of degassed THF water (2:1) under an inert atmosphere, followed by the addition of PdCl2 (3.5 mg, 2.0 mol%) and 2,2,6-trimethyl-5-iodo-1,3-dioxin-4-one 1 (1.0 equiv) with vigorous stirring for 3 h at 353 K, afforded compound (I) in 72% yield after column chromatography. Single crystals were obtained by slow evaporation from ethyl acetate.

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.95–0.98 Å, and with Uiso set to 1.2 times (1.5 for methyl) Ueq(parent atom).

Figures

Fig. 1.
The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).
Fig. 2.
Supramolecular association via C—H···O contacts (orange dashed lines) leading to a layer architecture in the structure of (I).

Crystal data

C16H16O3F(000) = 1088
Mr = 256.29Dx = 1.258 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4513 reflections
a = 14.8486 (15) Åθ = 2.7–23.7°
b = 9.621 (1) ŵ = 0.09 mm1
c = 18.9438 (18) ÅT = 100 K
V = 2706.3 (5) Å3Plate, colourless
Z = 80.20 × 0.10 × 0.05 mm

Data collection

Bruker SMART APEXII diffractometer2382 independent reflections
Radiation source: sealed tube1727 reflections with I > 2σ(I)
graphiteRint = 0.083
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −17→17
Tmin = 0.911, Tmax = 1k = −8→11
32445 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0366P)2 + 1.3345P] where P = (Fo2 + 2Fc2)/3
2382 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.44450 (8)−0.15682 (13)0.61722 (7)0.0282 (3)
O20.33370 (8)−0.01835 (13)0.58506 (6)0.0238 (3)
O30.36181 (8)0.21026 (13)0.54478 (6)0.0225 (3)
C11.01927 (13)−0.0304 (3)0.71504 (11)0.0403 (6)
H1A1.0539−0.07040.67600.060*
H1B1.0211−0.09350.75560.060*
H1C1.04540.05940.72840.060*
C20.92289 (12)−0.0097 (2)0.69219 (9)0.0261 (5)
C30.85526 (12)−0.0999 (2)0.71392 (9)0.0260 (4)
H30.8698−0.17530.74430.031*
C40.76733 (12)−0.08212 (19)0.69223 (9)0.0234 (4)
H40.7221−0.14420.70840.028*
C50.74413 (12)0.02656 (19)0.64657 (8)0.0208 (4)
C60.81219 (12)0.1170 (2)0.62428 (10)0.0254 (4)
H60.79820.19090.59290.030*
C70.89939 (12)0.0998 (2)0.64750 (10)0.0273 (5)
H70.94440.16370.63280.033*
C80.65282 (13)0.0444 (2)0.62380 (9)0.0230 (4)
C90.57567 (12)0.06035 (19)0.60694 (9)0.0226 (4)
C100.48224 (12)0.07787 (19)0.59006 (9)0.0216 (4)
C110.42172 (12)−0.0405 (2)0.60048 (9)0.0222 (4)
C120.30049 (12)0.12229 (19)0.58355 (10)0.0218 (4)
C130.45014 (12)0.19506 (19)0.55944 (9)0.0213 (4)
C140.28969 (12)0.1777 (2)0.65791 (9)0.0259 (5)
H14A0.24780.11830.68410.039*
H14B0.26590.27270.65610.039*
H14C0.34830.17810.68160.039*
C150.21469 (12)0.1198 (2)0.54194 (10)0.0278 (5)
H15A0.17040.06120.56610.042*
H15B0.22650.08200.49480.042*
H15C0.19100.21450.53770.042*
C160.50431 (13)0.3156 (2)0.53576 (9)0.0258 (4)
H16A0.51160.31200.48440.039*
H16B0.56360.31260.55840.039*
H16C0.47350.40190.54890.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0285 (7)0.0213 (7)0.0350 (8)0.0050 (6)−0.0016 (6)−0.0007 (6)
O20.0197 (7)0.0194 (7)0.0322 (7)0.0015 (6)−0.0015 (6)−0.0009 (6)
O30.0202 (7)0.0228 (7)0.0244 (6)0.0018 (6)−0.0003 (5)0.0029 (6)
C10.0234 (12)0.0672 (17)0.0302 (11)0.0004 (11)−0.0027 (9)−0.0092 (11)
C20.0218 (10)0.0367 (12)0.0199 (9)0.0010 (9)−0.0010 (8)−0.0103 (8)
C30.0266 (11)0.0284 (11)0.0229 (9)0.0036 (9)−0.0020 (8)−0.0008 (8)
C40.0245 (11)0.0238 (10)0.0220 (9)−0.0055 (9)0.0021 (8)−0.0013 (8)
C50.0201 (9)0.0243 (10)0.0179 (8)0.0008 (8)0.0006 (7)−0.0051 (8)
C60.0283 (11)0.0233 (11)0.0246 (10)−0.0004 (9)0.0033 (8)0.0001 (8)
C70.0231 (10)0.0316 (11)0.0271 (10)−0.0089 (9)0.0074 (8)−0.0065 (9)
C80.0242 (11)0.0242 (11)0.0206 (9)−0.0004 (8)0.0019 (8)−0.0007 (8)
C90.0235 (11)0.0244 (10)0.0200 (9)0.0003 (8)0.0028 (8)0.0003 (8)
C100.0209 (10)0.0247 (11)0.0193 (9)0.0024 (8)0.0019 (7)−0.0021 (8)
C110.0231 (10)0.0232 (11)0.0202 (9)0.0055 (8)−0.0008 (7)−0.0029 (8)
C120.0195 (10)0.0197 (10)0.0262 (10)0.0024 (8)0.0021 (8)0.0020 (8)
C130.0219 (10)0.0255 (11)0.0165 (8)0.0018 (8)0.0012 (7)−0.0041 (8)
C140.0243 (10)0.0272 (11)0.0262 (10)0.0036 (9)0.0017 (8)−0.0001 (8)
C150.0222 (10)0.0287 (11)0.0325 (10)0.0020 (9)−0.0023 (8)−0.0028 (9)
C160.0266 (10)0.0257 (11)0.0250 (9)−0.0006 (9)0.0034 (8)0.0004 (8)

Geometric parameters (Å, °)

O1—C111.211 (2)C6—H60.9500
O2—C111.356 (2)C7—H70.9500
O2—C121.440 (2)C8—C91.199 (2)
O3—C131.349 (2)C9—C101.434 (3)
O3—C121.444 (2)C10—C131.355 (3)
C1—C21.508 (3)C10—C111.464 (3)
C1—H1A0.9800C12—C151.498 (2)
C1—H1B0.9800C12—C141.515 (2)
C1—H1C0.9800C13—C161.481 (3)
C2—C31.390 (3)C14—H14A0.9800
C2—C71.395 (3)C14—H14B0.9800
C3—C41.379 (2)C14—H14C0.9800
C3—H30.9500C15—H15A0.9800
C4—C51.400 (2)C15—H15B0.9800
C4—H40.9500C15—H15C0.9800
C5—C61.399 (3)C16—H16A0.9800
C5—C81.433 (3)C16—H16B0.9800
C6—C71.378 (3)C16—H16C0.9800
C11—O2—C12118.82 (14)O1—C11—O2118.10 (17)
C13—O3—C12116.42 (14)O1—C11—C10125.63 (17)
C2—C1—H1A109.5O2—C11—C10116.10 (16)
C2—C1—H1B109.5O2—C12—O3110.17 (13)
H1A—C1—H1B109.5O2—C12—C15106.64 (15)
C2—C1—H1C109.5O3—C12—C15106.15 (14)
H1A—C1—H1C109.5O2—C12—C14110.40 (15)
H1B—C1—H1C109.5O3—C12—C14109.47 (15)
C3—C2—C7118.06 (17)C15—C12—C14113.88 (15)
C3—C2—C1121.20 (19)O3—C13—C10121.37 (17)
C7—C2—C1120.74 (18)O3—C13—C16112.39 (16)
C4—C3—C2121.19 (18)C10—C13—C16126.19 (16)
C4—C3—H3119.4C12—C14—H14A109.5
C2—C3—H3119.4C12—C14—H14B109.5
C3—C4—C5120.65 (17)H14A—C14—H14B109.5
C3—C4—H4119.7C12—C14—H14C109.5
C5—C4—H4119.7H14A—C14—H14C109.5
C6—C5—C4118.24 (17)H14B—C14—H14C109.5
C6—C5—C8121.20 (17)C12—C15—H15A109.5
C4—C5—C8120.56 (17)C12—C15—H15B109.5
C7—C6—C5120.52 (18)H15A—C15—H15B109.5
C7—C6—H6119.7C12—C15—H15C109.5
C5—C6—H6119.7H15A—C15—H15C109.5
C6—C7—C2121.31 (18)H15B—C15—H15C109.5
C6—C7—H7119.3C13—C16—H16A109.5
C2—C7—H7119.3C13—C16—H16B109.5
C9—C8—C5177.91 (18)H16A—C16—H16B109.5
C8—C9—C10177.35 (19)C13—C16—H16C109.5
C13—C10—C9122.26 (17)H16A—C16—H16C109.5
C13—C10—C11119.30 (16)H16B—C16—H16C109.5
C9—C10—C11118.19 (16)
C7—C2—C3—C4−0.1 (3)C13—C10—C11—O2−6.8 (2)
C1—C2—C3—C4−179.09 (17)C9—C10—C11—O2178.82 (15)
C2—C3—C4—C51.1 (3)C11—O2—C12—O345.9 (2)
C3—C4—C5—C6−0.7 (3)C11—O2—C12—C15160.69 (14)
C3—C4—C5—C8179.67 (17)C11—O2—C12—C14−75.12 (19)
C4—C5—C6—C7−0.7 (3)C13—O3—C12—O2−45.2 (2)
C8—C5—C6—C7178.97 (17)C13—O3—C12—C15−160.28 (15)
C5—C6—C7—C21.7 (3)C13—O3—C12—C1476.39 (18)
C3—C2—C7—C6−1.2 (3)C12—O3—C13—C1020.6 (2)
C1—C2—C7—C6177.71 (18)C12—O3—C13—C16−161.70 (14)
C12—O2—C11—O1163.63 (15)C9—C10—C13—O3−179.15 (15)
C12—O2—C11—C10−20.8 (2)C11—C10—C13—O36.7 (2)
C13—C10—C11—O1168.37 (17)C9—C10—C13—C163.5 (3)
C9—C10—C11—O1−6.0 (3)C11—C10—C13—C16−170.62 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16A···O1i0.982.523.363 (2)144
C7—H7···O1ii0.952.413.344 (2)169

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+3/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2577).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Caracelli, I., Stefani, H. A., Vieira, A. S., Machado, M. M. P. & Zukerman-Schpector, J. (2007). Z. Kristallogr. New Cryst. Struct.222, 345–346.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Iulek, J. & Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433–434.
  • Le, J. C.-D. & Pagenkopf, B. L. (2004). Org. Lett.6, 4097–4099. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stefani, H. A., Cella, R. & Vieira, A. S. (2007). Tetrahedron, 63, 3623–3658.
  • Vieira, A. S., Fiorante, P. F., Zukerman-Schpector, J., Alves, D., Botteselle, G. V. & Stefani, H. A. (2008). Tetrahedron, 64, 7234–7241.
  • Zukerman-Schpector, J., Vieira, A. S., Stefani, H. A. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o1694. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography