PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1281.
Published online 2009 October 3. doi:  10.1107/S1600536809039440
PMCID: PMC2971383

Triaqua­bis{μ-N-[N-(4-meth­oxy-2-oxidobenzyl­idene)glyc­yl]glycinato(3−)}cadmium(II)dicopper(II) dihydrate

Abstract

In the title compound, [CdCu2(C12H11N2O5)2(H2O)3]·2H2O, the CuII atoms are in a square plane of N2O2 atoms contributed by the tetra­dentate Schiff base trianion. The CuII atoms are coordinated by one phenolate O atom, one imine N atom, one amido N atom and one carboxyl­ate O atom. The CdII atom is connected via the carboxyl­ate groups, forming a heterotrinuclear CuII–CdII–CuII system. The CdII atom is seven-coordinate in a penta­gonal-bipyramidal geometry with four O atoms from two carboxyl­ate groups and three aqua ligands. The heterotrinuclear mol­ecules are linked to the uncoordinated water mol­ecules by O—H(...)O hydrogen bonds into a three-dimensional framework.

Related literature

For the magnetic properties of heteronuclear Schiff-base complexes, see: Liu et al. (2004 [triangle]); Zou et al. (2003 [triangle]); Wu et al. (2007 [triangle]); Costes et al. (2006 [triangle]). For their optical properties; see: Akine et al. (2008 [triangle]). For the synthesis, see: Miyasaka et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1281-scheme1.jpg

Experimental

Crystal data

  • [CdCu2(C12H11N2O5)2(H2O)3]·2H2O
  • M r = 856.02
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1281-efi1.jpg
  • a = 9.813 (2) Å
  • b = 12.547 (3) Å
  • c = 12.598 (3) Å
  • α = 94.175 (4)°
  • β = 103.168 (3)°
  • γ = 90.148 (4)°
  • V = 1506.0 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.18 mm−1
  • T = 296 K
  • 0.30 × 0.25 × 0.22 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.529, T max = 0.619
  • 7383 measured reflections
  • 5169 independent reflections
  • 4763 reflections with I > 2σ(I)
  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.110
  • S = 1.05
  • 5169 reflections
  • 417 parameters
  • H-atom parameters constrained
  • Δρmax = 1.00 e Å−3
  • Δρmin = −1.13 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809039440/ng2653sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039440/ng2653Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by SRF for ROCS, SEM and Yangzhou University.

supplementary crystallographic information

Comment

In recent years, the design and synthesis of Schiff base heteronuclear complexes that provide catalyst, biological activity, optical, magnetic materials (Wu et al., 2007; Costes et al., 2006; Liu et al., 2004; Zou et al., 2003; Akine et al., 2008) caused an increasing interest in coordination chemistry. One of the best strategies to design heterometallic species is the 'complex as ligand' approach (Miyasaka et al., 1996). In this article, we present the synthesis and structure of the title heterotrinuclear Schiff base complex derived from 4-methoxy-salicylaldehyde and glycylglycine.

The complex (I) is a asymmetric trinuclear [(CuL)2Cd(H2O)3] unit with the the L3- bound to CuII and CdII atoms and crystallizes in the triclinic space group P1 (Fig. 1). Two [CuL]- groups are connected by CdII cation in cis form to constitute a trinuclear CuII–CdII–CuII unit with Cu···Cu distances of 7.541 Å. [CuL]- anions have approximately square-planar structures. The Schiff base ligand L3- acts as a triple negatively charged quadridentate ONNO chelate and coordinated to the CuII atom via one phenolic oxygen, one imino nitrogen atom, one deprotonated amide nitrogen atom and one carboxylato oxygen atom. The Cu—O and Cu—N bond distances are in the range of 1.882 (2)–1.985 (2) Å and 1.889 (3)–1.923 (3) Å, respectively. The phenyl ring [C(1)—C(6)] / [C(13)—C(18)] and the chelate ring [O(1), C(1), C(6), C(7), N(1), Cu(1)] / [O(6), C(13), C(18), C(19), N(3), Cu(2)] make a small dihedral angle of 7.5 (2) ° / 8.9 (2) °, suggesting a large π-electron delocalization. The chelate rings [O(1), C(1), C(6), C(7), N(1), Cu(1)] and [O(6), C(13), C(18), C(19), N(3), Cu(2)] in the trinuclear moiety is almost parallel, with a small dihedral angle of 3.1 (2)°. The CdII atom is in a distorted pentagonal bipyramid environment, ligated by four carboxylato oxygen atoms (O(3), O(4), O(8), O(9)) arising from two [CuL]- units and three aqua ligands (O(11), O(12), O(13)). The seven Cd—O bonds in the structure are in the range of 2.258 (3) - 2.545 (3) Å. In the crystal structure, the hydrogen bonds (Table 1), O(11)–O(14), O(7)–O(11) and O(7)–O(14) formed a hexagon ring (Fig. 2(a)). The hexagon rings are further connected by CdII ions and hydrogen bonds composing two-dimensional framework in ac-plane. The two-dimensional frameworks are further connected via the intermolecular hydrogen bonds O(12)–O(2), O(12)–O(15) and O(15)–O(9) to constitute a three-dimensional network (Fig. 2(b)).

Experimental

Glycylglycine (5 mmol), 4-methoxy-salicylaldehyde (5 mmol) and LiOH (10 mmol) were dissolved in MeOH/H2O (30 ml, v:v = 1:1) and refluxed for 30 min. Then Cu(ClO4)2.6H2O (5 mmol) was added to the solution and the resulting solution was adjusted to 9–11 by 5 mol/L NaOH solution. After stirring at room temperature for 1 h, CdCl2.2.5H2O (2.5 mmol) was added. A violet precipitate was obtained immediately. After stirring for another 30 min and then filtrated, the precipitate was recrystallized from water. The violet crystals suitable for X-ray diffraction were obtained after one week. (yield 45% based on Cu(ClO4)2.6H2O).

Refinement

The water H atoms in (I) were located in a difference Fourier map with a distance restraint of O—H = 0.85 Å and Uiso(H) =1.5Ueq(O). All other H atoms were positioned geometrically and constrained as riding atoms, with C—H distances of 0.93–0.97 Å and Uiso(H) set to 1.2 or 1.5Ueq(C) of the parent atom.

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids.
Fig. 2.
(a) A schematic representation of the two-dimensional structure formed via hydrogen bonds, viewed from the ac-plane, showing the hydrogen bond hexagon rings. (b) A packing diagram for (I), viewed down the b-axis, showing a three-dimensional framework ...

Crystal data

[CdCu2(C12H11N2O5)2(H2O)3]·2H2OZ = 2
Mr = 856.02F(000) = 860
Triclinic, P1Dx = 1.888 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.813 (2) ÅCell parameters from 6310 reflections
b = 12.547 (3) Åθ = 2.4–27.8°
c = 12.598 (3) ŵ = 2.18 mm1
α = 94.175 (4)°T = 296 K
β = 103.168 (3)°Block, violet
γ = 90.148 (4)°0.30 × 0.25 × 0.22 mm
V = 1506.0 (6) Å3

Data collection

Bruker SMART APEX CCD diffractometer5169 independent reflections
Radiation source: fine-focus sealed tube4763 reflections with I > 2σ(I)
graphiteRint = 0.072
[var phi] and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −11→11
Tmin = 0.529, Tmax = 0.619k = −11→14
7383 measured reflectionsl = −14→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0755P)2 + 0.7984P] where P = (Fo2 + 2Fc2)/3
5169 reflections(Δ/σ)max = 0.001
417 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = −1.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.54611 (4)0.14993 (3)0.11223 (4)0.03071 (14)
Cu2−0.10904 (4)0.15156 (3)0.32980 (3)0.02996 (14)
Cd10.20503 (2)0.285718 (19)0.19598 (2)0.03119 (12)
C10.5331 (4)−0.0578 (3)0.1873 (3)0.0314 (7)
C20.4838 (4)−0.1279 (3)0.2518 (3)0.0352 (8)
H20.4140−0.10580.28700.042*
C30.5367 (4)−0.2297 (3)0.2644 (3)0.0368 (8)
C40.6384 (4)−0.2668 (3)0.2106 (3)0.0399 (9)
H40.6698−0.33650.21560.048*
C50.6902 (4)−0.1979 (3)0.1506 (3)0.0379 (8)
H50.7602−0.22160.11620.046*
C60.6440 (4)−0.0933 (3)0.1375 (3)0.0318 (7)
C120.5260 (5)−0.3950 (3)0.3460 (4)0.0538 (11)
H12A0.5008−0.43420.27580.081*
H12B0.4796−0.42660.39570.081*
H12C0.6255−0.39720.37360.081*
C70.7203 (4)−0.0258 (3)0.0834 (3)0.0340 (8)
H70.7910−0.05670.05400.041*
C80.7864 (4)0.1400 (3)0.0230 (3)0.0363 (8)
H8A0.77990.1131−0.05220.044*
H8B0.88330.13640.06240.044*
C90.7392 (4)0.2552 (3)0.0264 (3)0.0309 (7)
C100.5513 (4)0.3681 (3)0.0622 (3)0.0351 (8)
H10A0.51750.3910−0.01090.042*
H10B0.61510.42270.10480.042*
C110.4297 (4)0.3510 (3)0.1151 (3)0.0319 (8)
C13−0.0359 (4)−0.0660 (3)0.3442 (3)0.0305 (7)
C18−0.1321 (4)−0.0824 (3)0.4113 (3)0.0335 (8)
C17−0.1393 (4)−0.1828 (3)0.4521 (3)0.0386 (8)
H17−0.1992−0.19220.49840.046*
C16−0.0620 (4)−0.2677 (3)0.4267 (3)0.0410 (9)
H16−0.0676−0.33320.45590.049*
C150.0253 (4)−0.2527 (3)0.3556 (3)0.0371 (8)
C140.0404 (4)−0.1550 (3)0.3168 (3)0.0344 (8)
H180.1021−0.14720.27170.041*
C240.1580 (5)−0.3390 (3)0.2383 (4)0.0483 (10)
H24A0.0958−0.30780.17890.072*
H24B0.1793−0.41040.21520.072*
H24C0.2429−0.29680.26010.072*
C19−0.2290 (4)−0.0041 (3)0.4348 (3)0.0347 (8)
H19−0.2887−0.02330.47820.042*
C20−0.3461 (4)0.1646 (3)0.4241 (3)0.0378 (8)
H20A−0.34500.16840.50150.045*
H20B−0.43830.13950.38380.045*
C21−0.3162 (4)0.2750 (3)0.3911 (3)0.0321 (7)
C22−0.1562 (4)0.3748 (3)0.3139 (3)0.0363 (8)
H22A−0.13000.42710.37590.044*
H22B−0.22780.40510.25860.044*
C23−0.0309 (4)0.3470 (3)0.2686 (3)0.0281 (7)
N10.6983 (3)0.0738 (2)0.0726 (2)0.0318 (6)
N20.6222 (3)0.2672 (2)0.0577 (3)0.0342 (7)
N3−0.2407 (3)0.0901 (2)0.4011 (2)0.0339 (7)
N4−0.2090 (3)0.2785 (2)0.3474 (3)0.0342 (7)
O10.4761 (3)0.03723 (19)0.1772 (2)0.0352 (6)
O20.8121 (3)0.3263 (2)0.0003 (2)0.0445 (7)
O30.4089 (3)0.2550 (2)0.1407 (2)0.0348 (6)
O40.3531 (3)0.4239 (2)0.1324 (2)0.0419 (6)
O50.4843 (3)−0.2862 (2)0.3354 (2)0.0467 (7)
O6−0.0138 (3)0.02539 (18)0.3055 (2)0.0348 (6)
O7−0.3929 (3)0.3516 (2)0.4086 (2)0.0435 (7)
O80.0039 (3)0.24752 (19)0.2634 (2)0.0327 (5)
O90.0383 (3)0.41583 (19)0.2384 (2)0.0352 (6)
O100.0928 (3)−0.3418 (2)0.3282 (2)0.0483 (7)
O110.3254 (3)0.3184 (2)0.3709 (2)0.0412 (6)
H11C0.41250.31350.37390.062*
H11D0.30800.38100.39420.062*
O120.0844 (3)0.2909 (2)0.0208 (2)0.0377 (6)
H12D0.00860.25480.01130.057*
H12E0.06570.35530.00740.057*
O130.2045 (3)0.0988 (2)0.1947 (3)0.0557 (8)
H13A0.13890.07840.22290.084*
H13C0.28250.07880.23180.084*
O140.2161 (3)0.4906 (2)0.4629 (2)0.0426 (6)
H14A0.25560.55060.46120.064*
H14B0.13090.49220.42860.064*
O150.1553 (3)0.4549 (2)0.9108 (3)0.0534 (8)
H15B0.23210.48410.94610.080*
H15C0.08890.49790.91220.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0256 (2)0.0291 (2)0.0397 (3)0.00437 (17)0.01238 (18)0.00152 (17)
Cu20.0280 (2)0.0263 (2)0.0380 (3)0.00544 (17)0.01270 (18)0.00209 (17)
Cd10.02616 (17)0.03008 (17)0.03877 (18)0.00474 (11)0.01123 (11)−0.00016 (11)
C10.0277 (17)0.0302 (17)0.0338 (18)0.0049 (14)0.0037 (14)−0.0031 (14)
C20.0284 (18)0.0325 (18)0.044 (2)0.0067 (14)0.0072 (15)0.0018 (15)
C30.0324 (19)0.0315 (18)0.042 (2)0.0008 (15)−0.0007 (16)0.0022 (15)
C40.043 (2)0.0287 (18)0.041 (2)0.0074 (16)−0.0050 (17)−0.0007 (15)
C50.0335 (19)0.0363 (19)0.040 (2)0.0089 (15)0.0029 (16)−0.0068 (15)
C60.0276 (17)0.0320 (18)0.0331 (18)0.0035 (14)0.0032 (14)−0.0040 (14)
C120.064 (3)0.036 (2)0.059 (3)0.004 (2)0.006 (2)0.0156 (19)
C70.0263 (17)0.039 (2)0.0357 (19)0.0067 (14)0.0072 (14)−0.0068 (15)
C80.0267 (18)0.044 (2)0.041 (2)0.0026 (15)0.0142 (15)−0.0037 (16)
C90.0232 (17)0.041 (2)0.0287 (17)0.0014 (14)0.0068 (13)0.0010 (14)
C100.0295 (18)0.0327 (18)0.044 (2)0.0005 (15)0.0091 (15)0.0044 (15)
C110.0260 (18)0.0343 (19)0.0328 (18)−0.0010 (15)0.0021 (14)−0.0006 (14)
C130.0312 (18)0.0292 (17)0.0288 (17)0.0023 (14)0.0021 (14)0.0033 (13)
C180.0325 (19)0.0351 (19)0.0301 (18)−0.0005 (15)0.0020 (14)0.0003 (14)
C170.042 (2)0.036 (2)0.0361 (19)−0.0030 (16)0.0065 (16)0.0047 (15)
C160.047 (2)0.0324 (19)0.040 (2)−0.0014 (16)−0.0001 (17)0.0103 (15)
C150.041 (2)0.0307 (18)0.0338 (19)0.0055 (15)−0.0017 (16)−0.0005 (14)
C140.0355 (19)0.0317 (18)0.0347 (18)0.0034 (15)0.0049 (15)0.0027 (14)
C240.047 (2)0.034 (2)0.065 (3)0.0058 (17)0.017 (2)−0.0012 (18)
C190.0321 (19)0.038 (2)0.0352 (19)−0.0047 (15)0.0110 (15)0.0008 (15)
C200.0291 (19)0.040 (2)0.046 (2)0.0027 (15)0.0148 (16)0.0004 (16)
C210.0223 (17)0.0376 (19)0.0341 (18)0.0021 (14)0.0051 (14)−0.0071 (14)
C220.0350 (19)0.0316 (18)0.043 (2)0.0064 (15)0.0115 (16)0.0000 (15)
C230.0285 (17)0.0270 (17)0.0263 (16)0.0073 (14)0.0022 (13)−0.0016 (13)
N10.0251 (15)0.0350 (16)0.0362 (16)0.0046 (12)0.0101 (12)−0.0006 (12)
N20.0273 (15)0.0343 (16)0.0435 (17)0.0026 (12)0.0125 (13)0.0047 (13)
N30.0316 (16)0.0325 (16)0.0398 (16)0.0005 (12)0.0136 (13)−0.0008 (12)
N40.0304 (16)0.0314 (15)0.0434 (17)0.0078 (12)0.0140 (13)0.0022 (12)
O10.0319 (13)0.0284 (13)0.0490 (15)0.0075 (10)0.0160 (11)0.0050 (11)
O20.0309 (14)0.0480 (16)0.0585 (17)−0.0004 (12)0.0160 (13)0.0110 (13)
O30.0306 (13)0.0312 (13)0.0480 (15)0.0059 (10)0.0198 (11)0.0047 (11)
O40.0326 (14)0.0335 (14)0.0608 (18)0.0093 (11)0.0144 (12)0.0000 (12)
O50.0508 (17)0.0351 (14)0.0559 (17)0.0065 (12)0.0130 (14)0.0120 (12)
O60.0366 (14)0.0241 (12)0.0479 (15)0.0053 (10)0.0172 (11)0.0054 (10)
O70.0290 (14)0.0411 (15)0.0608 (17)0.0061 (11)0.0156 (12)−0.0093 (13)
O80.0304 (13)0.0287 (12)0.0420 (14)0.0065 (10)0.0141 (11)0.0045 (10)
O90.0332 (14)0.0265 (12)0.0469 (15)0.0008 (10)0.0112 (11)0.0030 (10)
O100.0637 (19)0.0301 (14)0.0515 (17)0.0137 (13)0.0121 (14)0.0079 (12)
O110.0296 (13)0.0465 (15)0.0452 (15)0.0062 (11)0.0071 (11)−0.0082 (12)
O120.0313 (13)0.0406 (14)0.0419 (14)0.0023 (11)0.0088 (11)0.0053 (11)
O130.0466 (17)0.0364 (15)0.093 (2)0.0109 (13)0.0331 (17)0.0098 (15)
O140.0462 (16)0.0375 (14)0.0413 (15)0.0083 (12)0.0054 (12)−0.0002 (11)
O150.0424 (17)0.0470 (17)0.070 (2)0.0006 (13)0.0068 (15)0.0164 (15)

Geometric parameters (Å, °)

Cu1—O11.887 (3)C11—O41.224 (5)
Cu1—N21.889 (3)C11—O31.296 (4)
Cu1—N11.916 (3)C13—O61.315 (4)
Cu1—O31.960 (2)C13—C141.411 (5)
Cu2—O61.882 (2)C13—C181.427 (5)
Cu2—N41.898 (3)C18—C171.402 (5)
Cu2—N31.922 (3)C18—C191.431 (5)
Cu2—O81.985 (2)C17—C161.370 (6)
Cd1—O112.258 (3)C17—H170.9300
Cd1—O122.260 (3)C16—C151.395 (6)
Cd1—O32.288 (2)C16—H160.9300
Cd1—O132.345 (3)C15—O101.364 (5)
Cd1—O82.380 (2)C15—C141.372 (5)
Cd1—O92.432 (3)C14—H180.9300
Cd1—O42.545 (3)C24—O101.425 (5)
C1—O11.320 (4)C24—H24A0.9600
C1—C21.396 (5)C24—H24B0.9600
C1—C61.431 (5)C24—H24C0.9600
C2—C31.387 (5)C19—N31.282 (5)
C2—H20.9300C19—H190.9300
C3—O51.366 (5)C20—N31.459 (5)
C3—C41.391 (6)C20—C211.522 (5)
C4—C51.359 (6)C20—H20A0.9700
C4—H40.9300C20—H20B0.9700
C5—C61.399 (5)C21—O71.260 (4)
C5—H50.9300C21—N41.296 (5)
C6—C71.434 (5)C22—N41.440 (5)
C12—O51.433 (5)C22—C231.501 (5)
C12—H12A0.9600C22—H22A0.9700
C12—H12B0.9600C22—H22B0.9700
C12—H12C0.9600C23—O91.230 (4)
C7—N11.281 (5)C23—O81.296 (4)
C7—H70.9300O11—H11C0.8502
C8—N11.464 (5)O11—H11D0.8500
C8—C91.520 (5)O12—H12D0.8499
C8—H8A0.9700O12—H12E0.8500
C8—H8B0.9700O13—H13A0.8499
C9—O21.249 (5)O13—H13C0.8500
C9—N21.302 (5)O14—H14A0.8500
C10—N21.450 (5)O14—H14B0.8500
C10—C111.515 (5)O15—H15B0.8500
C10—H10A0.9700O15—H15C0.8499
C10—H10B0.9700
O1—Cu1—N2175.76 (13)O6—C13—C18125.0 (3)
O1—Cu1—N196.85 (12)C14—C13—C18117.3 (3)
N2—Cu1—N184.08 (13)C17—C18—C13118.9 (3)
O1—Cu1—O395.95 (11)C17—C18—C19117.1 (3)
N2—Cu1—O383.07 (12)C13—C18—C19123.9 (3)
N1—Cu1—O3167.14 (12)C16—C17—C18122.9 (4)
O6—Cu2—N4177.36 (13)C16—C17—H17118.6
O6—Cu2—N397.34 (12)C18—C17—H17118.6
N4—Cu2—N383.47 (13)C17—C16—C15117.7 (3)
O6—Cu2—O896.54 (11)C17—C16—H16121.1
N4—Cu2—O882.68 (12)C15—C16—H16121.1
N3—Cu2—O8166.11 (12)O10—C15—C14123.4 (4)
O11—Cd1—O12167.94 (10)O10—C15—C16114.9 (3)
O11—Cd1—O390.74 (10)C14—C15—C16121.7 (4)
O12—Cd1—O391.08 (9)C15—C14—C13121.3 (4)
O11—Cd1—O1396.65 (11)C15—C14—H18119.4
O12—Cd1—O1395.42 (11)C13—C14—H18119.4
O3—Cd1—O1381.39 (10)O10—C24—H24A109.5
O11—Cd1—O888.27 (9)O10—C24—H24B109.5
O12—Cd1—O894.42 (9)H24A—C24—H24B109.5
O3—Cd1—O8158.18 (9)O10—C24—H24C109.5
O13—Cd1—O877.08 (10)H24A—C24—H24C109.5
O11—Cd1—O986.73 (9)H24B—C24—H24C109.5
O12—Cd1—O985.32 (9)N3—C19—C18125.7 (3)
O3—Cd1—O9147.44 (9)N3—C19—H19117.2
O13—Cd1—O9131.15 (10)C18—C19—H19117.2
O8—Cd1—O954.25 (8)N3—C20—C21109.8 (3)
O11—Cd1—O491.13 (10)N3—C20—H20A109.7
O12—Cd1—O480.39 (9)C21—C20—H20A109.7
O3—Cd1—O453.67 (9)N3—C20—H20B109.7
O13—Cd1—O4134.52 (10)C21—C20—H20B109.7
O8—Cd1—O4148.13 (8)H20A—C20—H20B108.2
O9—Cd1—O493.90 (8)O7—C21—N4127.0 (4)
O1—C1—C2118.2 (3)O7—C21—C20119.4 (3)
O1—C1—C6124.2 (3)N4—C21—C20113.6 (3)
C2—C1—C6117.6 (3)N4—C22—C23108.3 (3)
C3—C2—C1121.4 (4)N4—C22—H22A110.0
C3—C2—H2119.3C23—C22—H22A110.0
C1—C2—H2119.3N4—C22—H22B110.0
O5—C3—C2114.5 (4)C23—C22—H22B110.0
O5—C3—C4124.5 (3)H22A—C22—H22B108.4
C2—C3—C4121.0 (4)O9—C23—O8120.6 (3)
C5—C4—C3117.9 (4)O9—C23—C22121.7 (3)
C5—C4—H4121.1O8—C23—C22117.7 (3)
C3—C4—H4121.1C7—N1—C8122.0 (3)
C4—C5—C6123.6 (4)C7—N1—Cu1124.7 (3)
C4—C5—H5118.2C8—N1—Cu1113.2 (2)
C6—C5—H5118.2C9—N2—C10124.0 (3)
C5—C6—C1118.3 (3)C9—N2—Cu1118.8 (3)
C5—C6—C7117.1 (3)C10—N2—Cu1117.0 (2)
C1—C6—C7124.3 (3)C19—N3—C20122.9 (3)
O5—C12—H12A109.5C19—N3—Cu2123.0 (3)
O5—C12—H12B109.5C20—N3—Cu2113.8 (2)
H12A—C12—H12B109.5C21—N4—C22124.0 (3)
O5—C12—H12C109.5C21—N4—Cu2119.2 (3)
H12A—C12—H12C109.5C22—N4—Cu2116.8 (2)
H12B—C12—H12C109.5C1—O1—Cu1124.3 (2)
N1—C7—C6124.8 (3)C11—O3—Cu1115.3 (2)
N1—C7—H7117.6C11—O3—Cd197.6 (2)
C6—C7—H7117.6Cu1—O3—Cd1146.97 (13)
N1—C8—C9110.0 (3)C11—O4—Cd187.5 (2)
N1—C8—H8A109.7C3—O5—C12117.5 (3)
C9—C8—H8A109.7C13—O6—Cu2123.8 (2)
N1—C8—H8B109.7C23—O8—Cu2114.2 (2)
C9—C8—H8B109.7C23—O8—Cd192.9 (2)
H8A—C8—H8B108.2Cu2—O8—Cd1151.75 (12)
O2—C9—N2127.3 (4)C23—O9—Cd192.2 (2)
O2—C9—C8119.4 (3)C15—O10—C24117.8 (3)
N2—C9—C8113.2 (3)Cd1—O11—H11C109.4
N2—C10—C11107.5 (3)Cd1—O11—H11D109.4
N2—C10—H10A110.2H11C—O11—H11D109.5
C11—C10—H10A110.2Cd1—O12—H12D109.3
N2—C10—H10B110.2Cd1—O12—H12E109.4
C11—C10—H10B110.2H12D—O12—H12E109.5
H10A—C10—H10B108.5Cd1—O13—H13A109.1
O4—C11—O3121.0 (3)Cd1—O13—H13C109.4
O4—C11—C10121.9 (3)H13A—O13—H13C109.5
O3—C11—C10117.1 (3)H14A—O14—H14B109.5
O6—C13—C14117.7 (3)H15B—O15—H15C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O11—H11D···O140.851.912.715 (4)158
O13—H13A···O60.852.142.987 (4)175
O13—H13C···O10.852.212.829 (4)129
O14—H14B···O90.852.483.045 (4)125
O11—H11C···O7i0.851.912.722 (4)159
O12—H12D···O2ii0.852.112.667 (4)123
O12—H12E···O15iii0.852.132.737 (4)129
O14—H14A···O7iv0.852.172.791 (4)130
O15—H15B···O4v0.852.553.067 (4)121
O15—H15C···O9iv0.852.362.934 (4)126

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) x, y, z−1; (iv) −x, −y+1, −z+1; (v) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2653).

References

  • Akine, S., Taniguchi, T. & Nabeshima, T. (2008). Inorg. Chem.47, 3255–3264. [PubMed]
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2002). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT-Plus Bruker AXS Inc, Madison, Wisconsin, USA.
  • Costes, J. P., Dahan, F. & Wernsdorfer, W. (2006). Inorg. Chem.45, 5–7. [PubMed]
  • Liu, W. L., Song, Y., Li, Y. Z., Zou, Y., Dang, D. B., Ni, C. L. & Meng, Q. J. (2004). Chem. Commun. pp. 2946–2947.
  • Miyasaka, H., Matsumoto, N., Okawa, H., Re, N., Gallo, E. & Floriani, C. (1996). J. Am. Chem. Soc.118, 981–994.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, G., Hewitt, I. J., Mameri, S., Lan, Y. H., Clérac, R., Anson, C. E., Qiu, S. L. & Powell, A. K. (2007). Inorg. Chem.46, 7229–7231. [PubMed]
  • Zou, Y., Liu, W. L., Gao, S., Xi, J. L. & Meng, Q. J. (2003). Chem. Commun. pp. 2946–2947. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography