PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1456.
Published online 2009 October 28. doi:  10.1107/S1600536809042007
PMCID: PMC2971375

2,2′-Diamino-5,5′-dimethyl-4,4′-bi-1,3-thia­zolium tetra­chlorido­zincate(II)

Abstract

In the dianion of the title compound, (C8H12N4S2)[ZnCl4], the ZnII ion is in a slightly distorted tetra­hedral environment. In the cation, the mean planes of the thia­zole rings form a dihedral angle of 67.81 (6) Å. In the crystal structure, anions and cations are linked into a three-dimensional network via inter­molecular N—H(...)Cl hydrogen bonds.

Related literature

For the potential applications of metal-organic coordination compounds as anti­tumor drugs, polymers and luminescent materials, see: Hosseinian & Mahjoub (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1456-scheme1.jpg

Experimental

Crystal data

  • (C8H12N4S2)[ZnCl4]
  • M r = 435.51
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1456-efi1.jpg
  • a = 8.9149 (6) Å
  • b = 9.6487 (7) Å
  • c = 11.7361 (8) Å
  • α = 65.754 (5)°
  • β = 89.126 (5)°
  • γ = 62.496 (5)°
  • V = 797.22 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.46 mm−1
  • T = 120 K
  • 0.30 × 0.30 × 0.25 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.484, T max = 0.535
  • 6168 measured reflections
  • 3368 independent reflections
  • 3152 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.077
  • S = 1.05
  • 3368 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 0.66 e Å−3
  • Δρmin = −0.82 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT-Plus (Bruker, 1998 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809042007/lh2898sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042007/lh2898Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support of this work by Tarbiat Modares University and the University of Tehran is gratefully acknowledged.

supplementary crystallographic information

Comment

In coordination chemistry there are many studies on the interaction of ZnII ions with biomolecules (Hosseinian & Mahjoub, 2006: and references cited therein). Coordination between an organic ligand and ZnII ions improves or modifies the properties of biological molecules. In the human body the second abundant trace metal is zinc and it can be considered as a non toxic metal. The presence of zinc is vital to 300 enzyme structures, regulations and catalytic actions. As part of our research in the field of ZnII complexes of organic molecules the crystal structure of the title complexes is presented herein.

The asymmetric unit of the title compound is shown in Fig. 1. The bond lengths have normal values (Allen et al., 1987). In the crystal structure, anions and cations are linked into a three-dimensional network via intermolecular N-H···Cl hydrogen bonds. In addition, there are fairly close intermolecular S···Cl contacts ca. 3.24Å.

Experimental

To a methanol solution of ZnCl2 (1 mmol, 0. 136 g) was added, 2,2'-Diamino-5,5'-Dimethyl-4,4'-bithiazole (dadmbtz) (1 mmol, 0. 226 g). The mixture was refluxed for 2 h. The solution was cooled and filtrate was slow evaporated at room temperature. After 12 days, yellow block shaped crystals of the title compound were obtained.

Refinement

The hydrogen atoms boned to N atoms were located in difference Fourier maps and refined in 'as found' positions in a riding-model approximation with Uiso(H) = 1.2Ueq(N). H atoms boned to C atoms were placed in calculated positions and refined in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
Part of the crystal structure with dashed lines indicating hydrogen bonds. Only H atoms involved in hydrogen bonds are shown.

Crystal data

(C8H12N4S2)[ZnCl4]Z = 2
Mr = 435.51F(000) = 436
Triclinic, P1Dx = 1.814 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9149 (6) ÅCell parameters from 5086 reflections
b = 9.6487 (7) Åθ = 2.5–28.0°
c = 11.7361 (8) ŵ = 2.46 mm1
α = 65.754 (5)°T = 120 K
β = 89.126 (5)°Prism, yellow
γ = 62.496 (5)°0.30 × 0.30 × 0.25 mm
V = 797.22 (12) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer3368 independent reflections
Radiation source: normal-focus sealed tube3152 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.484, Tmax = 0.535k = −12→12
6168 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.077w = 1/[σ2(Fo2) + (0.040P)2 + 1.P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3368 reflectionsΔρmax = 0.66 e Å3
173 parametersΔρmin = −0.82 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0179 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.77593 (3)0.86751 (3)0.75845 (2)0.00894 (10)
Cl10.97516 (7)0.91131 (8)0.83034 (6)0.01767 (14)
Cl20.74022 (9)0.66200 (8)0.92201 (5)0.01983 (15)
Cl30.86565 (9)0.76054 (8)0.61574 (5)0.02216 (15)
Cl40.51769 (7)1.12209 (8)0.66076 (6)0.02434 (16)
S1−0.09151 (6)0.72895 (7)0.35203 (5)0.00929 (13)
S20.63717 (7)0.43870 (7)0.16847 (5)0.01112 (13)
N10.0383 (2)0.6517 (3)0.17917 (18)0.0122 (4)
H1A0.05060.63340.11180.015*
N20.4708 (3)0.3426 (3)0.33075 (19)0.0131 (4)
H2A0.43950.27850.39410.016*
N3−0.2658 (3)0.7787 (3)0.1413 (2)0.0169 (4)
H3A−0.35690.81790.17310.020*
H3B−0.26350.74750.08460.020*
N40.7579 (3)0.1184 (3)0.3653 (2)0.0194 (4)
H4A0.84690.09610.32980.023*
H4B0.74760.04110.43540.023*
C1−0.1143 (3)0.7216 (3)0.2097 (2)0.0111 (4)
C20.1792 (3)0.6012 (3)0.2685 (2)0.0106 (4)
C30.1324 (3)0.6365 (3)0.3667 (2)0.0101 (4)
C40.6262 (3)0.2791 (3)0.3020 (2)0.0118 (4)
C50.3552 (3)0.5195 (3)0.2475 (2)0.0111 (4)
C60.4236 (3)0.5932 (3)0.1553 (2)0.0099 (4)
C70.2430 (3)0.6131 (3)0.4750 (2)0.0159 (5)
H7A0.36440.55910.46820.024*
H7B0.23040.53700.55640.024*
H7C0.20660.72760.47150.024*
C80.3418 (3)0.7794 (3)0.0535 (2)0.0145 (5)
H8A0.22260.84530.06100.022*
H8B0.34110.7821−0.03090.022*
H8C0.40810.83250.06380.022*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.01114 (14)0.00947 (15)0.00651 (15)−0.00633 (11)0.00174 (10)−0.00251 (11)
Cl10.0133 (3)0.0225 (3)0.0240 (3)−0.0108 (2)0.0033 (2)−0.0142 (3)
Cl20.0385 (3)0.0201 (3)0.0117 (3)−0.0224 (3)0.0131 (2)−0.0079 (2)
Cl30.0459 (4)0.0147 (3)0.0096 (3)−0.0169 (3)0.0118 (3)−0.0070 (2)
Cl40.0107 (3)0.0210 (3)0.0218 (3)−0.0008 (2)0.0008 (2)−0.0011 (2)
S10.0094 (2)0.0116 (3)0.0101 (3)−0.0057 (2)0.00321 (19)−0.0072 (2)
S20.0108 (2)0.0074 (3)0.0111 (3)−0.0043 (2)0.00468 (19)−0.0010 (2)
N10.0165 (9)0.0154 (10)0.0116 (9)−0.0103 (8)0.0072 (7)−0.0096 (8)
N20.0187 (9)0.0095 (9)0.0126 (9)−0.0087 (8)0.0098 (8)−0.0047 (8)
N30.0162 (9)0.0258 (11)0.0145 (10)−0.0111 (8)0.0032 (8)−0.0134 (9)
N40.0217 (10)0.0070 (9)0.0184 (10)−0.0043 (8)0.0096 (8)−0.0001 (8)
C10.0161 (10)0.0096 (10)0.0106 (10)−0.0081 (9)0.0045 (8)−0.0052 (8)
C20.0124 (10)0.0098 (10)0.0135 (11)−0.0081 (8)0.0058 (8)−0.0059 (9)
C30.0107 (9)0.0075 (10)0.0143 (11)−0.0058 (8)0.0029 (8)−0.0054 (8)
C40.0168 (10)0.0091 (10)0.0110 (10)−0.0076 (9)0.0059 (8)−0.0047 (9)
C50.0128 (10)0.0099 (10)0.0150 (11)−0.0072 (8)0.0056 (8)−0.0077 (9)
C60.0101 (9)0.0085 (10)0.0116 (10)−0.0044 (8)0.0018 (8)−0.0053 (9)
C70.0121 (10)0.0199 (12)0.0187 (12)−0.0077 (9)0.0019 (9)−0.0116 (10)
C80.0125 (10)0.0106 (11)0.0130 (11)−0.0035 (9)0.0001 (9)−0.0016 (9)

Geometric parameters (Å, °)

Zn1—Cl12.2531 (6)N3—H3B0.8322
Zn1—Cl32.2642 (6)N4—C41.317 (3)
Zn1—Cl22.2707 (6)N4—H4A0.8693
Zn1—Cl42.2788 (6)N4—H4B0.8932
S1—C11.720 (2)C2—C31.340 (3)
S1—C31.746 (2)C2—C51.466 (3)
S2—C41.729 (2)C3—C71.495 (3)
S2—C61.752 (2)C5—C61.340 (3)
N1—C11.330 (3)C6—C81.497 (3)
N1—C21.403 (3)C7—H7A0.9800
N1—H1A0.8730C7—H7B0.9800
N2—C41.334 (3)C7—H7C0.9800
N2—C51.402 (3)C8—H8A0.9800
N2—H2A0.8877C8—H8B0.9800
N3—C11.324 (3)C8—H8C0.9800
N3—H3A0.8747
Cl1—Zn1—Cl3110.69 (3)N1—C2—C5119.60 (19)
Cl1—Zn1—Cl2110.34 (2)C2—C3—C7128.8 (2)
Cl3—Zn1—Cl2106.06 (2)C2—C3—S1110.42 (16)
Cl1—Zn1—Cl4111.25 (3)C7—C3—S1120.71 (16)
Cl3—Zn1—Cl4108.19 (3)N4—C4—N2126.2 (2)
Cl2—Zn1—Cl4110.16 (3)N4—C4—S2122.76 (17)
C1—S1—C391.07 (10)N2—C4—S2110.99 (17)
C4—S2—C691.00 (11)C6—C5—N2113.51 (19)
C1—N1—C2114.04 (18)C6—C5—C2127.9 (2)
C1—N1—H1A123.1N2—C5—C2118.63 (19)
C2—N1—H1A122.8C5—C6—C8128.4 (2)
C4—N2—C5114.14 (18)C5—C6—S2110.35 (17)
C4—N2—H2A123.8C8—C6—S2121.27 (16)
C5—N2—H2A121.9C3—C7—H7A109.5
C1—N3—H3A117.0C3—C7—H7B109.5
C1—N3—H3B116.7H7A—C7—H7B109.5
H3A—N3—H3B123.6C3—C7—H7C109.5
C4—N4—H4A114.3H7A—C7—H7C109.5
C4—N4—H4B119.7H7B—C7—H7C109.5
H4A—N4—H4B125.8C6—C8—H8A109.5
N3—C1—N1125.5 (2)C6—C8—H8B109.5
N3—C1—S1123.29 (17)H8A—C8—H8B109.5
N1—C1—S1111.22 (16)C6—C8—H8C109.5
C3—C2—N1113.22 (18)H8A—C8—H8C109.5
C3—C2—C5127.2 (2)H8B—C8—H8C109.5
C2—N1—C1—N3−179.8 (2)C6—S2—C4—N4−178.7 (2)
C2—N1—C1—S10.0 (2)C6—S2—C4—N20.43 (18)
C3—S1—C1—N3−179.3 (2)C4—N2—C5—C6−1.1 (3)
C3—S1—C1—N10.85 (17)C4—N2—C5—C2178.5 (2)
C1—N1—C2—C3−1.2 (3)C3—C2—C5—C6−112.4 (3)
C1—N1—C2—C5179.0 (2)N1—C2—C5—C667.4 (3)
N1—C2—C3—C7−175.7 (2)C3—C2—C5—N268.0 (3)
C5—C2—C3—C74.1 (4)N1—C2—C5—N2−112.2 (2)
N1—C2—C3—S11.8 (2)N2—C5—C6—C8−177.4 (2)
C5—C2—C3—S1−178.40 (18)C2—C5—C6—C83.0 (4)
C1—S1—C3—C2−1.52 (18)N2—C5—C6—S21.3 (2)
C1—S1—C3—C7176.21 (19)C2—C5—C6—S2−178.20 (18)
C5—N2—C4—N4179.3 (2)C4—S2—C6—C5−1.01 (17)
C5—N2—C4—S20.2 (2)C4—S2—C6—C8177.88 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.872.783.440 (3)133
N2—H2A···Cl4ii0.892.793.487 (2)137
N3—H3A···Cl4iii0.872.503.322 (3)156
N3—H3B···Cl2iv0.832.363.196 (3)179
N4—H4A···Cl1v0.872.443.280 (3)162
N4—H4B···Cl3ii0.892.383.189 (2)151

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) −x, −y+2, −z+1; (iv) x−1, y, z−1; (v) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2898).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (1998). SAINT-Plus and SMART Bruker AXS, Madison, Wisconsin, USA.
  • Hosseinian, A. & Mahjoub, A. R. (2006). Z. Anorg. Allg. Chem.632, 2505–2509.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography