PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2917.
Published online 2009 October 31. doi:  10.1107/S1600536809044304
PMCID: PMC2971373

(5Z)-5-(2-Methyl­benzyl­idene)-3-phenyl-2-thioxo-1,3-thia­zolidin-4-one

Abstract

In the title compound, C17H13NOS2, the heterocyclic ring is oriented at a dihedral angle of 74.43 (5)° with respect to the anilinic benzene ring and at a dihedral angle of 17.31 (9)° with respect to phenyl ring. An intra­molecular C—H(...)S inter­action occurs, resulting in an S(6) ring. In the crystal, the packing is consolidated by C—H(...)π inter­actions and possible very weak aromatic π–π stacking [centroid–centroid separation = 4.025 (1) Å].

Related literature

For related structures, see: Linden et al. (1999 [triangle]); Shahwar et al. (2009a [triangle],b [triangle],c [triangle]). For graph-set theory, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2917-scheme1.jpg

Experimental

Crystal data

  • C17H13NOS2
  • M r = 311.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2917-efi1.jpg
  • a = 9.8317 (4) Å
  • b = 16.6317 (6) Å
  • c = 9.3865 (4) Å
  • β = 93.541 (2)°
  • V = 1531.93 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.35 mm−1
  • T = 296 K
  • 0.40 × 0.30 × 0.18 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.879, T max = 0.941
  • 17261 measured reflections
  • 3807 independent reflections
  • 2879 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.104
  • S = 1.01
  • 3807 reflections
  • 191 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809044304/hb5181sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044304/hb5181Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

DS is grateful to Government College University, Lahore, for providing funds under the GCU funded Research Projects Programme.

supplementary crystallographic information

Comment

The title compound (I, Fig. 1), has been prepared and being reported in continuation of synthesizing various derivatives of rhodanine. In this context we have reported the crystal structure of (II) (5Z)-5-(2-Hydroxybenzylidene)-3-phenyl-2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009a), (III) (5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one methanol hemisolvate (Shahwar et al., 2009b) and (IV) (5E)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1,3-thiazolidin- 4-one methanol monosolvate (Shahwar et al., 2009c).

The crystal structure of (I) differs from (V) 3-Phenyl-5-(phenylmethylidene)-2-thioxo-1,3-thiazolidin-4-one (Linden et al., 1999) due to attachement of methyl group.

In (I) the heterocyclic ring A (N1/C7/S1/C8/C9), two benzene rings B (C1—C6) and C (C11–C16) are planar with maximum r. m. s. deviations of 0.0047, 0.0074 and 0.0046 Å respectively, from the respective mean square planes. The dihedral angles between A/B, A/C and B/C are 74.43 (5), 17.31 (9) and 59.19 (6)°, respectively. The intramolecular H-bondings of C—H···S (Table 1, Fig. 1) form S(6) ring motif (Bernstein et al., 1995). There exist π···π-interactions between adjacent molecules. The CgA···CgCi and CgC···CgAi [symmetry code: i = 2 - x, 1 - y, 1 - z] have centroid to centroid distance of 4.025 (1) Å, where CgA and CgC are the centroids of rings A and C, respectively. The C–H···π interactions (Table 1) also play role in stabilizing the molecules.

Experimental

3-Phenyl-2-thioxo-1,3-thiazolidin-4-one (0.419 g, 0.2 mol), 2-Methylbenzaldehyde (0.240 g, 0.2 mol) and K2CO3 (0.553 g, 0.4 mol) were dissolved in 10 ml distilled water at room temperature. The stirring was continued for 24 h and reaction was monitored by TLC. The precipitates were formed during neutalization of the reaction mixture with 5% HCl. The precipitates were filtered off and washed with saturated solution of NaCl. The crude material obtained was recrystalized in ethyl acetate to affoard yellow prisms of (I).

Refinement

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for other H atoms.

Figures

Fig. 1.
View of (I) with displacement ellipsoids drawn at the 50% probability level. The dotted line represents the intramolecular H-bond.

Crystal data

C17H13NOS2F(000) = 648
Mr = 311.40Dx = 1.350 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3807 reflections
a = 9.8317 (4) Åθ = 2.1–28.3°
b = 16.6317 (6) ŵ = 0.35 mm1
c = 9.3865 (4) ÅT = 296 K
β = 93.541 (2)°Prisms, yellow
V = 1531.93 (11) Å30.40 × 0.30 × 0.18 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer3807 independent reflections
Radiation source: fine-focus sealed tube2879 reflections with I > 2σ(I)
graphiteRint = 0.028
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.1°
ω scansh = −13→12
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −13→22
Tmin = 0.879, Tmax = 0.941l = −12→9
17261 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0498P)2 + 0.3691P] where P = (Fo2 + 2Fc2)/3
3807 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.95527 (4)0.36087 (3)0.48338 (4)0.0408 (1)
S20.81145 (5)0.25140 (3)0.66855 (5)0.0544 (2)
O10.62790 (12)0.44603 (8)0.30111 (16)0.0590 (5)
N10.69362 (13)0.35311 (8)0.47353 (15)0.0379 (4)
C10.55749 (16)0.32728 (10)0.49995 (18)0.0409 (5)
C20.47556 (18)0.37600 (11)0.5756 (2)0.0508 (6)
C30.3467 (2)0.34908 (14)0.6034 (3)0.0648 (8)
C40.3022 (2)0.27496 (15)0.5571 (3)0.0686 (8)
C50.3841 (2)0.22789 (15)0.4798 (3)0.0774 (9)
C60.5136 (2)0.25369 (12)0.4493 (3)0.0644 (8)
C70.71757 (16)0.41175 (9)0.37026 (18)0.0400 (5)
C80.86629 (15)0.42329 (9)0.36025 (17)0.0358 (5)
C90.80674 (16)0.32015 (9)0.54449 (17)0.0374 (5)
C100.91369 (16)0.47413 (9)0.26411 (18)0.0390 (5)
C111.05266 (15)0.49045 (10)0.22684 (17)0.0383 (5)
C121.07841 (16)0.55752 (10)0.14107 (17)0.0393 (5)
C131.20990 (18)0.56853 (12)0.0986 (2)0.0522 (6)
C141.31437 (18)0.51669 (14)0.1394 (2)0.0591 (7)
C151.29056 (18)0.45192 (13)0.2249 (2)0.0580 (7)
C161.16070 (17)0.43879 (12)0.2676 (2)0.0509 (6)
C170.96876 (19)0.61723 (10)0.0967 (2)0.0500 (6)
H20.506000.426180.607500.0609*
H30.289760.381610.654100.0777*
H40.216350.256760.578350.0823*
H50.352980.178000.447090.0929*
H60.569160.221850.395890.0773*
H100.847020.503790.212930.0468*
H131.227960.612210.040850.0626*
H141.401330.525610.108910.0709*
H151.361210.417250.253650.0695*
H161.144470.394610.324870.0611*
H17A1.005960.658050.038130.0751*
H17B0.934580.641570.180050.0751*
H17C0.895820.590140.043570.0751*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0330 (2)0.0478 (2)0.0411 (2)0.0007 (2)−0.0014 (2)0.0040 (2)
S20.0639 (3)0.0516 (3)0.0477 (3)−0.0025 (2)0.0028 (2)0.0119 (2)
O10.0342 (6)0.0622 (8)0.0804 (10)0.0084 (6)0.0030 (6)0.0248 (7)
N10.0321 (7)0.0371 (7)0.0450 (8)−0.0012 (5)0.0062 (5)0.0000 (6)
C10.0342 (8)0.0439 (9)0.0451 (9)−0.0024 (7)0.0059 (7)0.0020 (7)
C20.0418 (9)0.0535 (10)0.0578 (11)0.0034 (8)0.0089 (8)−0.0037 (9)
C30.0432 (11)0.0808 (15)0.0722 (14)0.0103 (10)0.0183 (10)0.0057 (12)
C40.0382 (10)0.0817 (15)0.0866 (16)−0.0095 (10)0.0095 (10)0.0170 (13)
C50.0572 (13)0.0668 (14)0.109 (2)−0.0241 (11)0.0110 (13)−0.0107 (14)
C60.0501 (11)0.0584 (12)0.0864 (16)−0.0107 (9)0.0177 (11)−0.0182 (11)
C70.0341 (8)0.0369 (8)0.0495 (9)0.0031 (6)0.0066 (7)0.0013 (7)
C80.0321 (8)0.0346 (8)0.0408 (8)0.0034 (6)0.0023 (6)−0.0016 (6)
C90.0396 (8)0.0364 (8)0.0363 (8)−0.0013 (6)0.0035 (6)−0.0048 (6)
C100.0330 (8)0.0390 (8)0.0451 (9)0.0053 (6)0.0026 (7)0.0011 (7)
C110.0330 (8)0.0445 (8)0.0374 (8)0.0006 (7)0.0025 (6)−0.0017 (7)
C120.0378 (8)0.0421 (8)0.0379 (9)−0.0053 (7)0.0022 (7)−0.0042 (7)
C130.0482 (10)0.0555 (11)0.0535 (11)−0.0121 (8)0.0076 (8)0.0006 (9)
C140.0343 (9)0.0815 (14)0.0623 (12)−0.0096 (9)0.0106 (8)−0.0051 (11)
C150.0336 (9)0.0813 (14)0.0589 (12)0.0108 (9)0.0014 (8)0.0055 (10)
C160.0383 (9)0.0640 (12)0.0508 (10)0.0069 (8)0.0060 (8)0.0122 (9)
C170.0530 (10)0.0416 (9)0.0556 (11)−0.0013 (8)0.0043 (8)0.0059 (8)

Geometric parameters (Å, °)

S1—C81.7476 (16)C12—C131.388 (2)
S1—C91.7389 (16)C12—C171.506 (2)
S2—C91.6306 (16)C13—C141.377 (3)
O1—C71.205 (2)C14—C151.372 (3)
N1—C11.442 (2)C15—C161.379 (2)
N1—C71.405 (2)C2—H20.9300
N1—C91.375 (2)C3—H30.9300
C1—C21.371 (2)C4—H40.9300
C1—C61.373 (3)C5—H50.9300
C2—C31.384 (3)C6—H60.9300
C3—C41.370 (3)C10—H100.9300
C4—C51.364 (3)C13—H130.9300
C5—C61.390 (3)C14—H140.9300
C7—C81.483 (2)C15—H150.9300
C8—C101.341 (2)C16—H160.9300
C10—C111.457 (2)C17—H17A0.9600
C11—C121.408 (2)C17—H17B0.9600
C11—C161.401 (2)C17—H17C0.9600
C8—S1—C993.05 (7)C13—C14—C15120.20 (17)
C1—N1—C7121.49 (13)C14—C15—C16119.26 (18)
C1—N1—C9121.99 (13)C11—C16—C15121.57 (18)
C7—N1—C9116.49 (13)C1—C2—H2121.00
N1—C1—C2119.62 (15)C3—C2—H2121.00
N1—C1—C6118.77 (15)C2—C3—H3120.00
C2—C1—C6121.60 (16)C4—C3—H3120.00
C1—C2—C3118.72 (18)C3—C4—H4120.00
C2—C3—C4120.6 (2)C5—C4—H4120.00
C3—C4—C5119.9 (2)C4—C5—H5120.00
C4—C5—C6120.7 (2)C6—C5—H5120.00
C1—C6—C5118.4 (2)C1—C6—H6121.00
O1—C7—N1123.48 (15)C5—C6—H6121.00
O1—C7—C8126.56 (15)C8—C10—H10115.00
N1—C7—C8109.96 (13)C11—C10—H10115.00
S1—C8—C7109.66 (11)C12—C13—H13119.00
S1—C8—C10129.72 (12)C14—C13—H13119.00
C7—C8—C10120.60 (14)C13—C14—H14120.00
S1—C9—S2121.42 (10)C15—C14—H14120.00
S1—C9—N1110.83 (11)C14—C15—H15120.00
S2—C9—N1127.74 (12)C16—C15—H15120.00
C8—C10—C11130.48 (15)C11—C16—H16119.00
C10—C11—C12119.31 (14)C15—C16—H16119.00
C10—C11—C16121.79 (15)C12—C17—H17A109.00
C12—C11—C16118.82 (14)C12—C17—H17B109.00
C11—C12—C13118.18 (15)C12—C17—H17C109.00
C11—C12—C17122.00 (14)H17A—C17—H17B109.00
C13—C12—C17119.81 (15)H17A—C17—H17C109.00
C12—C13—C14121.96 (18)H17B—C17—H17C109.00
C9—S1—C8—C70.70 (12)C3—C4—C5—C61.1 (4)
C9—S1—C8—C10−177.47 (16)C4—C5—C6—C10.6 (4)
C8—S1—C9—S2179.23 (11)O1—C7—C8—S1179.38 (15)
C8—S1—C9—N1−0.06 (13)O1—C7—C8—C10−2.3 (3)
C7—N1—C1—C2−75.8 (2)N1—C7—C8—S1−1.15 (16)
C7—N1—C1—C6104.8 (2)N1—C7—C8—C10177.21 (14)
C9—N1—C1—C2106.26 (19)S1—C8—C10—C113.5 (3)
C9—N1—C1—C6−73.2 (2)C7—C8—C10—C11−174.47 (16)
C1—N1—C7—O12.6 (2)C8—C10—C11—C12−168.06 (17)
C1—N1—C7—C8−176.90 (14)C8—C10—C11—C1615.4 (3)
C9—N1—C7—O1−179.33 (16)C10—C11—C12—C13−175.47 (16)
C9—N1—C7—C81.18 (19)C10—C11—C12—C175.4 (2)
C1—N1—C9—S1177.41 (12)C16—C11—C12—C131.1 (2)
C1—N1—C9—S2−1.8 (2)C16—C11—C12—C17−178.04 (16)
C7—N1—C9—S1−0.66 (17)C10—C11—C16—C15176.08 (17)
C7—N1—C9—S2−179.90 (13)C12—C11—C16—C15−0.5 (3)
N1—C1—C2—C3−178.13 (18)C11—C12—C13—C14−0.8 (3)
C6—C1—C2—C31.3 (3)C17—C12—C13—C14178.36 (17)
N1—C1—C6—C5177.6 (2)C12—C13—C14—C15−0.2 (3)
C2—C1—C6—C5−1.8 (3)C13—C14—C15—C160.9 (3)
C1—C2—C3—C40.5 (3)C14—C15—C16—C11−0.6 (3)
C2—C3—C4—C5−1.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16···S10.932.523.2197 (19)133
C17—H17C···CgCi0.962.723.569 (2)148

Symmetry codes: (i) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5181).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Linden, A., Awad, E. M. A. H. & Heimgartner, H. (1999). Acta Cryst. C55, 1877–1881.
  • Shahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009a). Acta Cryst. E65, o2903. [PMC free article] [PubMed]
  • Shahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009b). Acta Cryst. E65, o2637. [PMC free article] [PubMed]
  • Shahwar, D., Tahir, M. N., Raza, M. A., Saddaf, M. & Majeed, S. (2009c). Acta Cryst. E65, o2638. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography