PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1320.
Published online 2009 October 7. doi:  10.1107/S1600536809040161
PMCID: PMC2971356

Bis(μ-9-anthracenemethano­lato)bis­[dimethyl­aluminium(III)]

Abstract

The title complex, [Al2(CH3)4(C15H11O)2], is dimeric bridged through the O atoms of the 9-anthracenemethano­late anions. Each Al atom is tetra­coordinated by two bridging O atoms from two different 9-anthracenemethano­late ligands and by two C atoms from two methyl groups, forming a distorted tetra­hedral environment. The average Al—O bond distance in the Al2O2 core is 1.845 Å.

Related literature

For background to metal complex-catalysed ring-opening polymerization of lactones/lactides, see: Liu et al. (2001 [triangle]); Wu et al. (2006 [triangle]). For related structures, see: Lin et al. (1999 [triangle]); Lou et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1320-scheme1.jpg

Experimental

Crystal data

  • [Al2(CH3)4(C15H11O)2]
  • M r = 528.57
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1320-efi1.jpg
  • a = 7.7852 (3) Å
  • b = 11.3804 (4) Å
  • c = 17.6749 (6) Å
  • α = 85.683 (2)°
  • β = 79.883 (2)°
  • γ = 74.617 (2)°
  • V = 1485.72 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 296 K
  • 0.45 × 0.38 × 0.32 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.945, T max = 0.960
  • 31484 measured reflections
  • 7298 independent reflections
  • 4944 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.234
  • S = 1.01
  • 7298 reflections
  • 343 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT-Plus (Bruker, 2008 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809040161/rk2172sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040161/rk2172Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support in part from the National Science Council, Taiwan (NSC97-2113-M-033-005-MY2) and in part from the project of specific research fields in Chung Yuan Christian University, Taiwan (No. CYCU-98-CR–CH).

supplementary crystallographic information

Comment

During the last decade, it has been of great interest to develop new catalytic/initiating systems for the preparation of aliphatic polyesters, such as poly(ε-caprolactone) and poly(lactide). Metal complex-catalyzed ring-opening polymerization (ROP) of lactones/lactides has been proven to be the most promising method to synthesize these polymers (Wu et al., 2006). Among them, a variety of main group metal complexes, such as magnesium, zinc and lithium as well as aluminium complexes have been reported to be efficient initiators/catalysts. In particular, Liu et al. (2001) have reported the aluminium benzylalkoxide complexes supported by the bulky bisphenolate ligand and these complexes have been demonstrated as efficient initiators to catalyze ROP of cyclic esters. Recently, our group is interested in the synthesis and preparation of aluminium complexes derived from the 9-anthracenemethanolate ligands. The compound, 9-anthracenemethanol has been proven as a useful initiator to initiate living cationic polymerization of δ-valerolactone in the presence of HCl.Et2O (Lou et al., 2002). We report herein the synthesis and crystal structure of the 9-anthracenemethanolate ligand incorporated AlIII complex, I, a potential initiator for the ROP of ε-caprolactone (Fig. 2).

The solid structure of I reveals a dimeric AlIII complex (Fig. 1), doubly bridged through the O atoms of the 9-anthracenemethanolate anions. The geometry around each Al atom is four-coordinated with a distorted tetrahedral environment in which two bridging O atoms come from two different 9-anthracenemethanolate ligands and two C atoms are from two methyl groups. The average bond distance of Al-O in the Al2O2 core of 1.8453 (14)Å is within a normal range for an Al2O2 ring of four-coordinated aluminium complexes (Lin et al., 1999).

Experimental

The title compound I was synthesized by the following procedures (Fig. 2): to a rapidly stirred solution of 9-anthracenemethanol (0.21 g, 1.0 mmol) in 1,2-dichloroethane (20 ml) was slowly added AlMe3 (0.6 ml, 2.0 M in toluene, 1.2 mmol). The mixture was further stirred at room temperature for 4 h and then dried under vacuum. The residue was extracted with 1,2-dichloroethane (10 ml), and the saturated solution was cooled to 273 K, yielding colourless crystals. Yield: 0.22 g (83%). 1H NMR (CDCl3, p.p.m.): δ 7.43-8.47 (18H, m, ArH), 5.67 (4H, s, CH2), -1.39 (12H, s, AlCH3).

Refinement

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H = 0.93 Å with Uiso(H) = 1.2 Ueq(C) for phenyl hydrogen; 0.96 Å with Uiso(H) = 1.5 Ueq(C) for CH3 group; 0.97 Å with Uiso(H) = 1.2 Ueq(C) for CH2 group.

Figures

Fig. 1.
A view of the molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
The title compound, I, (reaction path scheme).

Crystal data

[Al2(CH3)4(C15H11O)2]Z = 2
Mr = 528.57F(000) = 560
Triclinic, P1Dx = 1.181 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7852 (3) ÅCell parameters from 9970 reflections
b = 11.3804 (4) Åθ = 2.2–28.2°
c = 17.6749 (6) ŵ = 0.13 mm1
α = 85.683 (2)°T = 296 K
β = 79.883 (2)°Block, colourless
γ = 74.617 (2)°0.45 × 0.38 × 0.32 mm
V = 1485.72 (9) Å3

Data collection

Bruker APEXII CCD diffractometer7298 independent reflections
Radiation source: fine-focus sealed tube4944 reflections with I > 2σ(I)
graphiteRint = 0.033
Detector resolution: 8.3333 pixels mm-1θmax = 28.4°, θmin = 1.9°
[var phi] and ω scansh = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2008)k = −14→15
Tmin = 0.945, Tmax = 0.960l = −23→23
31484 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.234H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.17P)2] where P = (Fo2 + 2Fc2)/3
7298 reflections(Δ/σ)max = 0.002
343 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Al10.71289 (7)0.62997 (5)0.30278 (4)0.0483 (2)
Al20.36490 (7)0.76614 (5)0.27971 (3)0.0449 (2)
O10.50638 (17)0.60755 (11)0.27575 (8)0.0466 (3)
O20.57693 (17)0.79058 (12)0.29925 (9)0.0501 (4)
C10.4531 (3)0.50037 (18)0.26509 (14)0.0550 (5)
H1A0.37520.51700.22620.066*
H1B0.38470.47790.31280.066*
C20.6143 (2)0.39518 (17)0.24061 (12)0.0460 (4)
C30.6999 (3)0.3874 (2)0.16343 (13)0.0571 (5)
C40.6426 (5)0.4791 (3)0.10646 (17)0.0878 (9)
H4A0.54460.54540.11970.105*
C50.7327 (7)0.4689 (5)0.0324 (2)0.1269 (16)
H5A0.69610.5290−0.00430.152*
C60.8791 (8)0.3689 (5)0.0114 (2)0.143 (2)
H6A0.93590.3626−0.03960.171*
C70.9404 (5)0.2806 (4)0.06366 (19)0.1063 (12)
H7A1.04060.21650.04870.128*
C80.8509 (3)0.2866 (2)0.14130 (14)0.0662 (7)
C90.9068 (3)0.1975 (2)0.19499 (16)0.0651 (6)
H9A1.00280.13100.17940.078*
C100.8260 (3)0.20243 (18)0.27155 (13)0.0509 (5)
C110.8872 (3)0.1102 (2)0.32601 (19)0.0709 (7)
H11A0.98100.04290.30980.085*
C120.8137 (4)0.1174 (3)0.40009 (19)0.0814 (8)
H12A0.85720.05640.43510.098*
C130.6709 (4)0.2172 (3)0.42484 (15)0.0720 (7)
H13A0.62090.22180.47670.086*
C140.6036 (3)0.3072 (2)0.37536 (13)0.0580 (6)
H14A0.50740.37180.39380.070*
C150.6778 (2)0.30507 (17)0.29495 (11)0.0435 (4)
C160.7421 (4)0.5780 (2)0.40803 (15)0.0778 (8)
H16A0.86460.53270.40930.117*
H16B0.66240.52730.42760.117*
H16C0.71360.64820.43920.117*
C170.9212 (3)0.6023 (2)0.22087 (17)0.0745 (7)
H17A1.02570.55410.24080.112*
H17B0.94200.67920.20130.112*
H17C0.89860.56000.18020.112*
C180.6307 (3)0.89486 (18)0.31628 (13)0.0550 (5)
H18A0.75720.88510.29510.066*
H18B0.61750.90030.37160.066*
C190.5213 (3)1.01085 (17)0.28411 (11)0.0450 (4)
C200.3866 (2)1.09329 (17)0.33176 (10)0.0401 (4)
C210.3403 (3)1.0730 (2)0.41330 (12)0.0514 (5)
H21A0.39661.00010.43640.062*
C220.2155 (3)1.1591 (2)0.45698 (14)0.0625 (6)
H22A0.18971.14420.50970.075*
C230.1249 (3)1.2691 (2)0.42521 (15)0.0659 (6)
H23A0.04141.32710.45650.079*
C240.1592 (3)1.2906 (2)0.34909 (15)0.0601 (6)
H24A0.09651.36320.32790.072*
C250.2891 (3)1.20518 (18)0.30016 (12)0.0460 (4)
C260.3239 (3)1.2290 (2)0.22149 (13)0.0574 (6)
H26A0.25791.30080.20070.069*
C270.4547 (4)1.1484 (2)0.17324 (13)0.0614 (6)
C280.4924 (5)1.1736 (3)0.09214 (15)0.0921 (10)
H28A0.42401.24350.07050.110*
C290.6261 (7)1.0967 (4)0.04722 (17)0.1195 (15)
H29A0.65021.1150−0.00510.143*
C300.7283 (6)0.9909 (4)0.0774 (2)0.1214 (15)
H30A0.82060.93960.04520.146*
C310.6957 (4)0.9609 (3)0.15368 (16)0.0860 (9)
H31A0.76430.88860.17280.103*
C320.5583 (3)1.0386 (2)0.20398 (12)0.0560 (5)
C330.3002 (4)0.8271 (3)0.17994 (14)0.0738 (7)
H33A0.17500.87060.18630.111*
H33B0.32090.75990.14690.111*
H33C0.37280.88100.15740.111*
C340.1772 (3)0.7840 (2)0.37059 (14)0.0673 (6)
H34A0.06450.83140.35700.101*
H34B0.20970.82450.40950.101*
H34C0.16520.70490.38980.101*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Al10.0401 (3)0.0352 (3)0.0677 (4)−0.0034 (2)−0.0115 (3)−0.0059 (3)
Al20.0410 (3)0.0354 (3)0.0551 (4)−0.0032 (2)−0.0095 (2)−0.0001 (2)
O10.0405 (7)0.0330 (7)0.0656 (8)−0.0061 (5)−0.0100 (6)−0.0060 (6)
O20.0437 (7)0.0330 (7)0.0742 (9)−0.0088 (5)−0.0121 (6)−0.0041 (6)
C10.0448 (10)0.0343 (11)0.0875 (15)−0.0110 (8)−0.0136 (10)−0.0016 (10)
C20.0431 (9)0.0333 (10)0.0643 (12)−0.0127 (7)−0.0097 (8)−0.0056 (8)
C30.0709 (14)0.0490 (12)0.0601 (12)−0.0285 (10)−0.0148 (10)0.0017 (10)
C40.124 (3)0.080 (2)0.0741 (17)−0.0458 (18)−0.0311 (16)0.0150 (14)
C50.195 (5)0.136 (4)0.071 (2)−0.085 (4)−0.028 (3)0.032 (2)
C60.201 (5)0.191 (6)0.059 (2)−0.112 (5)0.021 (2)−0.015 (3)
C70.121 (3)0.120 (3)0.077 (2)−0.050 (2)0.0299 (19)−0.036 (2)
C80.0713 (15)0.0648 (16)0.0659 (14)−0.0290 (12)0.0059 (11)−0.0211 (12)
C90.0531 (12)0.0468 (13)0.0918 (17)−0.0092 (10)0.0008 (11)−0.0232 (12)
C100.0446 (10)0.0341 (10)0.0768 (14)−0.0114 (8)−0.0125 (9)−0.0082 (9)
C110.0621 (14)0.0389 (13)0.119 (2)−0.0142 (10)−0.0352 (14)0.0051 (13)
C120.092 (2)0.0694 (19)0.102 (2)−0.0431 (16)−0.0486 (17)0.0321 (16)
C130.0897 (18)0.082 (2)0.0616 (14)−0.0488 (16)−0.0242 (13)0.0115 (13)
C140.0592 (12)0.0580 (14)0.0635 (13)−0.0270 (10)−0.0065 (10)−0.0096 (10)
C150.0408 (9)0.0344 (10)0.0598 (11)−0.0147 (7)−0.0107 (8)−0.0057 (8)
C160.0953 (19)0.0590 (16)0.0813 (17)−0.0070 (14)−0.0378 (15)−0.0061 (13)
C170.0463 (12)0.0707 (18)0.1021 (19)−0.0134 (11)0.0024 (12)−0.0149 (14)
C180.0538 (11)0.0385 (11)0.0758 (14)−0.0087 (9)−0.0203 (10)−0.0096 (10)
C190.0500 (10)0.0348 (10)0.0559 (11)−0.0174 (8)−0.0141 (8)−0.0006 (8)
C200.0446 (9)0.0337 (9)0.0489 (10)−0.0186 (7)−0.0141 (7)0.0017 (7)
C210.0567 (11)0.0488 (12)0.0544 (11)−0.0226 (9)−0.0135 (9)0.0064 (9)
C220.0649 (13)0.0680 (16)0.0582 (12)−0.0289 (12)0.0008 (10)−0.0070 (11)
C230.0548 (13)0.0591 (15)0.0837 (17)−0.0167 (11)−0.0018 (11)−0.0162 (12)
C240.0520 (12)0.0388 (12)0.0912 (17)−0.0103 (9)−0.0188 (11)−0.0012 (11)
C250.0467 (10)0.0377 (10)0.0603 (11)−0.0193 (8)−0.0165 (8)0.0055 (8)
C260.0707 (14)0.0456 (12)0.0670 (13)−0.0274 (10)−0.0292 (11)0.0166 (10)
C270.0900 (17)0.0613 (15)0.0494 (11)−0.0433 (13)−0.0216 (11)0.0061 (10)
C280.144 (3)0.096 (2)0.0536 (14)−0.060 (2)−0.0243 (16)0.0117 (15)
C290.201 (4)0.131 (4)0.0437 (14)−0.086 (3)0.003 (2)−0.0071 (18)
C300.177 (4)0.118 (3)0.073 (2)−0.070 (3)0.036 (2)−0.038 (2)
C310.106 (2)0.0741 (19)0.0757 (17)−0.0322 (16)0.0162 (15)−0.0268 (14)
C320.0733 (14)0.0493 (13)0.0544 (11)−0.0314 (11)−0.0076 (10)−0.0090 (9)
C330.0879 (18)0.0706 (18)0.0672 (15)−0.0211 (14)−0.0297 (13)0.0142 (12)
C340.0529 (12)0.0675 (16)0.0729 (15)−0.0059 (11)−0.0001 (10)−0.0059 (12)

Geometric parameters (Å, °)

Al1—O11.8396 (13)C16—H16B0.9600
Al1—O21.8560 (14)C16—H16C0.9600
Al1—C161.943 (3)C17—H17A0.9600
Al1—C171.949 (2)C17—H17B0.9600
Al1—Al22.8236 (8)C17—H17C0.9600
Al2—O21.8384 (14)C18—C191.501 (3)
Al2—O11.8473 (14)C18—H18A0.9700
Al2—C331.946 (2)C18—H18B0.9700
Al2—C341.956 (2)C19—C201.406 (3)
O1—C11.424 (2)C19—C321.424 (3)
O2—C181.427 (2)C20—C251.428 (3)
C1—C21.512 (3)C20—C211.439 (3)
C1—H1A0.9700C21—C221.359 (3)
C1—H1B0.9700C21—H21A0.9300
C2—C151.403 (3)C22—C231.395 (4)
C2—C31.407 (3)C22—H22A0.9300
C3—C81.429 (3)C23—C241.342 (3)
C3—C41.433 (4)C23—H23A0.9300
C4—C51.369 (5)C24—C251.419 (3)
C4—H4A0.9300C24—H24A0.9300
C5—C61.400 (6)C25—C261.389 (3)
C5—H5A0.9300C26—C271.387 (4)
C6—C71.360 (6)C26—H26A0.9300
C6—H6A0.9300C27—C321.422 (4)
C7—C81.423 (4)C27—C281.435 (3)
C7—H7A0.9300C28—C291.345 (5)
C8—C91.373 (4)C28—H28A0.9300
C9—C101.387 (3)C29—C301.382 (6)
C9—H9A0.9300C29—H29A0.9300
C10—C111.414 (3)C30—C311.362 (4)
C10—C151.434 (3)C30—H30A0.9300
C11—C121.333 (4)C31—C321.414 (3)
C11—H11A0.9300C31—H31A0.9300
C12—C131.396 (4)C33—H33A0.9600
C12—H12A0.9300C33—H33B0.9600
C13—C141.353 (4)C33—H33C0.9600
C13—H13A0.9300C34—H34A0.9600
C14—C151.437 (3)C34—H34B0.9600
C14—H14A0.9300C34—H34C0.9600
C16—H16A0.9600
O1—Al1—O279.89 (6)C10—C15—C14115.7 (2)
O1—Al1—C16113.50 (10)Al1—C16—H16A109.5
O2—Al1—C16110.32 (9)Al1—C16—H16B109.5
O1—Al1—C17114.72 (10)H16A—C16—H16B109.5
O2—Al1—C17110.62 (10)Al1—C16—H16C109.5
C16—Al1—C17120.46 (13)H16A—C16—H16C109.5
O1—Al1—Al240.12 (4)H16B—C16—H16C109.5
O2—Al1—Al239.93 (4)Al1—C17—H17A109.5
C16—Al1—Al2116.40 (9)Al1—C17—H17B109.5
C17—Al1—Al2122.85 (9)H17A—C17—H17B109.5
O2—Al2—O180.15 (6)Al1—C17—H17C109.5
O2—Al2—C33115.53 (10)H17A—C17—H17C109.5
O1—Al2—C33111.86 (10)H17B—C17—H17C109.5
O2—Al2—C34112.98 (9)O2—C18—C19112.21 (16)
O1—Al2—C34109.75 (9)O2—C18—H18A109.2
C33—Al2—C34119.67 (12)C19—C18—H18A109.2
O2—Al2—Al140.39 (4)O2—C18—H18B109.2
O1—Al2—Al139.92 (4)C19—C18—H18B109.2
C33—Al2—Al1124.36 (9)H18A—C18—H18B107.9
C34—Al2—Al1115.69 (8)C20—C19—C32119.69 (19)
C1—O1—Al1132.01 (11)C20—C19—C18121.31 (18)
C1—O1—Al2127.49 (11)C32—C19—C18118.98 (19)
Al1—O1—Al299.97 (6)C19—C20—C25120.19 (18)
C18—O2—Al2134.10 (12)C19—C20—C21123.53 (19)
C18—O2—Al1125.88 (11)C25—C20—C21116.28 (18)
Al2—O2—Al199.69 (6)C22—C21—C20120.8 (2)
O1—C1—C2111.61 (15)C22—C21—H21A119.6
O1—C1—H1A109.3C20—C21—H21A119.6
C2—C1—H1A109.3C21—C22—C23122.0 (2)
O1—C1—H1B109.3C21—C22—H22A119.0
C2—C1—H1B109.3C23—C22—H22A119.0
H1A—C1—H1B108.0C24—C23—C22119.4 (2)
C15—C2—C3120.10 (19)C24—C23—H23A120.3
C15—C2—C1119.84 (19)C22—C23—H23A120.3
C3—C2—C1120.1 (2)C23—C24—C25121.5 (2)
C2—C3—C8119.2 (2)C23—C24—H24A119.2
C2—C3—C4122.0 (2)C25—C24—H24A119.2
C8—C3—C4118.8 (2)C26—C25—C24120.9 (2)
C5—C4—C3119.8 (4)C26—C25—C20119.19 (19)
C5—C4—H4A120.1C24—C25—C20119.94 (19)
C3—C4—H4A120.1C27—C26—C25121.6 (2)
C4—C5—C6120.7 (4)C27—C26—H26A119.2
C4—C5—H5A119.7C25—C26—H26A119.2
C6—C5—H5A119.7C26—C27—C32120.1 (2)
C7—C6—C5121.6 (3)C26—C27—C28121.7 (3)
C7—C6—H6A119.2C32—C27—C28118.2 (3)
C5—C6—H6A119.2C29—C28—C27120.4 (3)
C6—C7—C8119.9 (4)C29—C28—H28A119.8
C6—C7—H7A120.1C27—C28—H28A119.8
C8—C7—H7A120.1C28—C29—C30121.2 (3)
C9—C8—C7121.3 (3)C28—C29—H29A119.4
C9—C8—C3119.6 (2)C30—C29—H29A119.4
C7—C8—C3119.1 (3)C31—C30—C29120.9 (3)
C8—C9—C10122.7 (2)C31—C30—H30A119.6
C8—C9—H9A118.7C29—C30—H30A119.6
C10—C9—H9A118.7C30—C31—C32120.6 (3)
C9—C10—C11121.7 (2)C30—C31—H31A119.7
C9—C10—C15118.2 (2)C32—C31—H31A119.7
C11—C10—C15120.1 (2)C31—C32—C27118.7 (2)
C12—C11—C10121.5 (3)C31—C32—C19122.2 (2)
C12—C11—H11A119.2C27—C32—C19119.2 (2)
C10—C11—H11A119.2Al2—C33—H33A109.5
C11—C12—C13119.7 (2)Al2—C33—H33B109.5
C11—C12—H12A120.2H33A—C33—H33B109.5
C13—C12—H12A120.2Al2—C33—H33C109.5
C14—C13—C12121.7 (3)H33A—C33—H33C109.5
C14—C13—H13A119.1H33B—C33—H33C109.5
C12—C13—H13A119.1Al2—C34—H34A109.5
C13—C14—C15121.3 (2)Al2—C34—H34B109.5
C13—C14—H14A119.4H34A—C34—H34B109.5
C15—C14—H14A119.4Al2—C34—H34C109.5
C2—C15—C10120.14 (19)H34A—C34—H34C109.5
C2—C15—C14124.20 (19)H34B—C34—H34C109.5
O1—Al1—Al2—O2−173.54 (10)C2—C3—C8—C7−178.3 (2)
C16—Al1—Al2—O290.62 (12)C4—C3—C8—C70.3 (3)
C17—Al1—Al2—O2−83.19 (12)C7—C8—C9—C10178.0 (2)
O2—Al1—Al2—O1173.54 (10)C3—C8—C9—C10−2.1 (3)
C16—Al1—Al2—O1−95.83 (12)C8—C9—C10—C11−179.3 (2)
C17—Al1—Al2—O190.35 (12)C8—C9—C10—C150.2 (3)
O1—Al1—Al2—C33−83.44 (12)C9—C10—C11—C12177.5 (2)
O2—Al1—Al2—C3390.10 (12)C15—C10—C11—C12−2.0 (3)
C16—Al1—Al2—C33−179.27 (12)C10—C11—C12—C131.0 (4)
C17—Al1—Al2—C336.91 (14)C11—C12—C13—C140.4 (4)
O1—Al1—Al2—C3490.53 (11)C12—C13—C14—C15−0.8 (3)
O2—Al1—Al2—C34−95.92 (12)C3—C2—C15—C10−2.2 (3)
C16—Al1—Al2—C34−5.30 (13)C1—C2—C15—C10177.45 (16)
C17—Al1—Al2—C34−179.11 (12)C3—C2—C15—C14177.77 (17)
O2—Al1—O1—C1−176.03 (18)C1—C2—C15—C14−2.6 (3)
C16—Al1—O1—C1−68.15 (19)C9—C10—C15—C22.0 (3)
C17—Al1—O1—C175.81 (19)C11—C10—C15—C2−178.52 (18)
Al2—Al1—O1—C1−171.8 (2)C9—C10—C15—C14−177.99 (17)
O2—Al1—O1—Al2−4.20 (6)C11—C10—C15—C141.5 (3)
C16—Al1—O1—Al2103.68 (10)C13—C14—C15—C2179.87 (19)
C17—Al1—O1—Al2−112.36 (10)C13—C14—C15—C10−0.2 (3)
O2—Al2—O1—C1176.59 (17)Al2—O2—C18—C19−26.6 (3)
C33—Al2—O1—C1−69.73 (19)Al1—O2—C18—C19161.38 (14)
C34—Al2—O1—C165.57 (18)O2—C18—C19—C20105.0 (2)
Al1—Al2—O1—C1172.35 (19)O2—C18—C19—C32−76.5 (2)
O2—Al2—O1—Al14.24 (6)C32—C19—C20—C25−0.9 (3)
C33—Al2—O1—Al1117.92 (11)C18—C19—C20—C25177.62 (16)
C34—Al2—O1—Al1−106.78 (10)C32—C19—C20—C21−179.83 (17)
O1—Al2—O2—C18−177.66 (19)C18—C19—C20—C21−1.3 (3)
C33—Al2—O2—C1872.7 (2)C19—C20—C21—C22176.45 (18)
C34—Al2—O2—C18−70.3 (2)C25—C20—C21—C22−2.5 (3)
Al1—Al2—O2—C18−173.5 (2)C20—C21—C22—C231.1 (3)
O1—Al2—O2—Al1−4.20 (6)C21—C22—C23—C241.0 (3)
C33—Al2—O2—Al1−113.83 (11)C22—C23—C24—C25−1.6 (3)
C34—Al2—O2—Al1103.19 (10)C23—C24—C25—C26−179.6 (2)
O1—Al1—O2—C18178.43 (17)C23—C24—C25—C200.0 (3)
C16—Al1—O2—C1866.97 (19)C19—C20—C25—C262.6 (3)
C17—Al1—O2—C18−68.82 (18)C21—C20—C25—C26−178.35 (16)
Al2—Al1—O2—C18174.21 (19)C19—C20—C25—C24−177.04 (16)
O1—Al1—O2—Al24.22 (6)C21—C20—C25—C242.0 (3)
C16—Al1—O2—Al2−107.24 (11)C24—C25—C26—C27177.8 (2)
C17—Al1—O2—Al2116.97 (10)C20—C25—C26—C27−1.9 (3)
Al1—O1—C1—C2−27.9 (3)C25—C26—C27—C32−0.6 (3)
Al2—O1—C1—C2162.27 (14)C25—C26—C27—C28−179.2 (2)
O1—C1—C2—C15100.4 (2)C26—C27—C28—C29176.7 (3)
O1—C1—C2—C3−79.9 (2)C32—C27—C28—C29−2.0 (4)
C15—C2—C3—C80.3 (3)C27—C28—C29—C301.1 (6)
C1—C2—C3—C8−179.36 (18)C28—C29—C30—C310.5 (6)
C15—C2—C3—C4−178.3 (2)C29—C30—C31—C32−1.2 (5)
C1—C2—C3—C42.1 (3)C30—C31—C32—C270.3 (4)
C2—C3—C4—C5178.5 (3)C30—C31—C32—C19−179.4 (3)
C8—C3—C4—C50.0 (4)C26—C27—C32—C31−177.4 (2)
C3—C4—C5—C60.8 (6)C28—C27—C32—C311.3 (3)
C4—C5—C6—C7−1.9 (7)C26—C27—C32—C192.3 (3)
C5—C6—C7—C82.3 (6)C28—C27—C32—C19−179.02 (19)
C6—C7—C8—C9178.5 (3)C20—C19—C32—C31178.1 (2)
C6—C7—C8—C3−1.4 (5)C18—C19—C32—C31−0.4 (3)
C2—C3—C8—C91.8 (3)C20—C19—C32—C27−1.6 (3)
C4—C3—C8—C9−179.6 (2)C18—C19—C32—C27179.90 (18)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2172).

References

  • Bruker (2008). APEX2, SADABS and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lin, C.-H., Ko, B.-T., Wang, F.-C., Lin, C.-C. & Kuo, C.-Y. (1999). J. Organomet. Chem.575, 67–75.
  • Liu, Y.-C., Ko, B.-T. & Lin, C.-C. (2001). Macromolecules, 34, 6196–6201.
  • Lou, X., Detrembleur, C. & Jerome, R. (2002). Macromolecules, 35, 1190–1195.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, J., Yu, T.-L., Chen, C.-T. & Lin, C.-C. (2006). Coord. Chem. Rev 250, 602–626.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography