PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1367–m1368.
Published online 2009 October 17. doi:  10.1107/S1600536809041658
PMCID: PMC2971352

Di-μ-hydroxido-bis[tris(1,1,1,5,5,5-hexa­fluoro­acetyl­acetonato-κ2 O,O′)hafnium(IV)] acetone solvate

Abstract

The binuclear title compound, [Hf2(C5HF6O2)6(OH)2]·C3H6O, contains an HfIV atom which is eight coordinated and surrounded by three chelating β-diketonato 1,1,1,5,5,5-hexa­fluoro­acetyl­acetonate (hfaa) ligands and two bridging OH groups situated on a twofold rotation axis. The HfO8 coordination polyhedron shows a slightly distorted Archimedean square anti-prismatic coordination with average Hf—O, C—O, C—CMe distances of 2.19 (2), 1.26 (2) and 1.49 (2) Å, respectively, and an O—Hf—O bite angle of 75.3 (5)°. Weak O—H(...)O hydrogen bonding inter­actions are observed between one of the bridging hydr­oxy groups and the disordered solvent mol­ecule.

Related literature

A monoclinic structure of the solvent-free title compound was first investigated by Zherikova et al. (2006a [triangle]). For more hafnium and zirconium complexes containing β-diketonato ligands, see: Viljoen et al. (2008 [triangle]); Calderazzo et al. (1998 [triangle]); Zherikova et al. (2005 [triangle], 2006b [triangle]); Steyn et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1367-scheme1.jpg

Experimental

Crystal data

  • [Hf2(C5HF6O2)6(OH)2]·C3H6O
  • M r = 1691.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1367-efi1.jpg
  • a = 22.1290 (14) Å
  • b = 12.4100 (8) Å
  • c = 19.5010 (11) Å
  • β = 105.197 (2)°
  • V = 5168.1 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.21 mm−1
  • T = 100 K
  • 0.26 × 0.21 × 0.02 mm

Data collection

  • Bruker X8 APEXII 4K Kappa CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.360, T max = 0.919
  • 24620 measured reflections
  • 6381 independent reflections
  • 5035 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.119
  • S = 1.03
  • 6381 reflections
  • 373 parameters
  • 5 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 2.07 e Å−3
  • Δρmin = −1.49 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041658/wm2265sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041658/wm2265Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the Advanced Metals Initiative (AMI) and the Department of Science and Technology (DST) of South Africa, as well as the New Metals Development Network (NMDN) and the South African Nuclear Energy Corporation Limited (Necsa) is gratefully acknowledged.

supplementary crystallographic information

Comment

This study was done as part of ongoing research into the reactions of O,O'- and O,N-bidentate ligands with hafnium(IV) and zirconium(IV). If hafnium and zirconium show differences in their chelating behaviour, either by reaction rates, solubilities, coordination modes, equilibrium behaviour, etc., it could possibly be exploited as a novel separation technique for the two metals. A wide range of volatile tetrakis-diketonato metal complexes have been prepared by Zherikova et al. (2005, 2006a,b) to be used for the preparation of hafnium dioxide films and oxide coatings.

Colourless crystals of the title compound crystallize in the monoclinic crystal system (C2/c, Z=4) (Figure 1) with four acetone solvent molecules in the unit cell. The monoclinic structure of the solvent-free compound earlier reported by Zherikova et al. (2006a) cannot be superimposed with the title compound due to differences in metal coordination. Hexafluoroacetylacetonato hafnium(IV) is one of very few complexes which is not isostructural to its zirconium counterpart. Literature revealed that Zr(hfaa)4 has a monomeric structure with a slightly distorted antiprismatic coordination polyhedron about the zirconium atom. The metal complex of the title compound consists of a HfIV atom which is eight-coordinated and surrounded by three hfaa ligands and two bridging OH-groups thereby adopting a slightly distorted Archimedean anti-prismatic coordination geometry (Figure 2). The dimer skeleton exhibits a flat diamond-like structure with Hf—O7, Hf—O8 and Hf—Hfidistances of 2.113 (7), 2.091 (7) and 3.5130 (7) Å, respectively, and a bite angle of 66.6 (4)°. The hexafluoroacetylacetonato ligands form three six-membered metallocycles with average Hf—O, C—O, C—CMe distances of 2.19 (2) Å, 1.256 (15) Å and 1.485 (16) Å respectively, and an O—Hf—O bite angle of 75.3 (5)° (Table 1). In the title structure the dimer units are connected by Van der Waals interactions between different F atoms (Figure 3) to produce a three dimensional network, where the average F···F distances are 2.9 (2) Å. Lastly, weak hydrogen bonding interactions are observed between one of the bridging hydroxy groups (O7—H7) and the solvent molecule (Table 2). The opposing hydroxy group (O8—H8) does not show any hydrogen interactions, probably due to packing effects.

For more hafnium and zirconium complexes containing β-diketonato ligands, see Viljoen et al. (2008), Calderazzo et al. (1998), Zherikova et al. (2005, 2006b) and Steyn et al. (2008).

Experimental

Chemicals were purchased from Sigma and Aldrich and used as received. Hexafluoroacetylacetone (450 µL, 3.3 mmol) was added drop-wise to a suspension of HfCl4 (241 mg, 0.75 mmol) in toluene (10 ml). The dissolution turned into a slightly white solution after 20 min. After refluxing for ca. 12 h, the crude product was filtered and evaporated via vacuum. Colourless crystals were obtained after re-crystallization in acetone at 253 K. The compound crystallized out as a colourless substance. (Yield: 408 mg, 43%) Spectroscopy data: 1H NMR (acetone-d6): δ = 6.59 (s, H),7.29 (s, H); IR (ATR): ν(CO)= 1553 cm-1.

Refinement

The aromatic, methine, and methyl H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for aromatic and methine, and Uiso(H) = 1.5Ueq(C) for methyl protons. Torsion angles for methyl protons were refined from electron density. The highest residual electron density lies within 0.84 Å from F1B. Two of the CF3 groups are disordered over two positions each, and the anisotropic displacement parameters for these disordered groups were refined using similarity restraints. The acetone solvent molecule is disordered over two equal positions. The symmetry-related acetone is generated by the symmetry operator 1 - x, y, 1/2 - z, resulting in one full-occupancy disordered solvent.

Figures

Fig. 1.
Representation of the title compound (I), showing the numbering scheme and displacement ellipsoids (50% probability). Only one orientation of the disordered parts of the structure (–CF3 and solvate) is displayed; hydrogen atoms are omitted for ...
Fig. 2.
Slightly distorted Archimedean antiprism coordination polyhedron surrounding the central hafnium atom (displacement ellipsoids at the 50% probability level).
Fig. 3.
Packing of molecules in the crystal structure, illustrating how the dimer units are connected by Van der Waals interactions to form a three dimensional network (hydrogen atoms and F···F interactions omitted for clarity).

Crystal data

[Hf2(C5HF6O2)6(OH)2]·C3H6OF(000) = 3200
Mr = 1691.42Dx = 2.174 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 8999 reflections
a = 22.1290 (14) Åθ = 3.1–28.1°
b = 12.4100 (8) ŵ = 4.21 mm1
c = 19.5010 (11) ÅT = 100 K
β = 105.197 (2)°Plate, colourless
V = 5168.1 (6) Å30.26 × 0.21 × 0.02 mm
Z = 4

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer6381 independent reflections
Radiation source: fine-focus sealed tube5035 reflections with I > 2σ(I)
graphiteRint = 0.050
ω– and [var phi]–scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −25→29
Tmin = 0.360, Tmax = 0.919k = −16→15
24620 measured reflectionsl = −25→15

Refinement

Refinement on F25 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041w = 1/[σ2(Fo2) + (0.0606P)2 + 32.7892P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max = 0.001
S = 1.03Δρmax = 2.07 e Å3
6381 reflectionsΔρmin = −1.49 e Å3
373 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Hf0.419608 (10)0.227714 (18)0.207046 (12)0.02116 (9)
C10.3711 (5)−0.0844 (7)0.0809 (6)0.0721 (14)
C20.3592 (3)0.0258 (4)0.1079 (3)0.0270 (12)
C30.2981 (3)0.0645 (5)0.0884 (3)0.0327 (13)
H10.26690.02460.05770.039*
C40.2838 (3)0.1603 (5)0.1140 (3)0.0268 (12)
C50.2168 (3)0.2039 (5)0.0939 (4)0.0377 (16)
C60.3336 (4)−0.0077 (8)0.3312 (5)0.0638 (11)
C70.3517 (3)0.1044 (5)0.3105 (4)0.0356 (14)
C80.3298 (3)0.1955 (6)0.3383 (4)0.0386 (15)
H20.29940.190.36330.046*
C90.3545 (3)0.2930 (5)0.3274 (3)0.0326 (14)
C100.3404 (3)0.3945 (6)0.3660 (4)0.0438 (17)
C110.3635 (3)0.5603 (5)0.1098 (3)0.0298 (13)
C120.3980 (3)0.4503 (5)0.1192 (3)0.0261 (12)
C130.4324 (3)0.4228 (5)0.0712 (3)0.0297 (12)
H30.44150.47450.04090.036*
C140.4526 (3)0.3192 (5)0.0693 (3)0.0271 (12)
C150.4830 (3)0.2826 (5)0.0116 (3)0.0346 (15)
O10.40552 (18)0.0693 (3)0.1480 (2)0.0287 (9)
O20.32118 (18)0.2240 (3)0.1555 (2)0.0256 (8)
O30.38704 (18)0.1031 (3)0.2699 (2)0.0321 (9)
O40.39107 (18)0.3134 (3)0.2892 (2)0.0270 (8)
O50.38857 (18)0.3933 (3)0.1676 (2)0.0266 (8)
O60.4472 (2)0.2418 (3)0.1103 (2)0.0283 (9)
O70.50.3223 (4)0.250.0250 (11)
O80.50.1356 (5)0.250.0271 (12)
F1A0.3226 (8)−0.1422 (12)0.0495 (9)0.0721 (14)0.375 (6)
F2A0.3984 (7)−0.0611 (10)0.0202 (8)0.0721 (14)0.375 (6)
F3A0.4211 (8)−0.1344 (12)0.1156 (9)0.0721 (14)0.375 (6)
F1B0.3629 (4)−0.1582 (6)0.1313 (5)0.0721 (14)0.625 (6)
F2B0.3347 (5)−0.1112 (7)0.0202 (5)0.0721 (14)0.625 (6)
F3B0.4280 (5)−0.1047 (7)0.0806 (5)0.0721 (14)0.625 (6)
F40.17688 (18)0.1341 (4)0.0530 (3)0.0613 (13)
F50.19641 (18)0.2225 (3)0.1501 (3)0.0489 (11)
F60.2136 (2)0.2953 (4)0.0574 (2)0.0541 (12)
F7A0.3759 (4)−0.0493 (8)0.3801 (6)0.0638 (11)0.667 (12)
F8A0.3265 (4)−0.0786 (7)0.2726 (5)0.0638 (11)0.667 (12)
F9A0.2780 (4)−0.0118 (7)0.3431 (6)0.0638 (11)0.667 (12)
F7B0.3875 (8)−0.0651 (16)0.3596 (11)0.0638 (11)0.333 (12)
F8B0.3023 (8)−0.0593 (14)0.2764 (10)0.0638 (11)0.333 (12)
F9B0.2993 (8)−0.0006 (14)0.3789 (12)0.0638 (11)0.333 (12)
F100.3100 (2)0.4661 (4)0.3203 (2)0.0553 (12)
F110.3059 (3)0.3715 (5)0.4103 (3)0.0885 (19)
F120.3928 (2)0.4404 (4)0.4033 (2)0.0654 (14)
F130.30844 (18)0.5497 (3)0.0616 (2)0.0451 (10)
F140.3532 (2)0.5951 (3)0.1687 (2)0.0456 (10)
F150.3962 (2)0.6343 (3)0.0856 (3)0.0619 (13)
F160.4473 (2)0.2113 (4)−0.0304 (2)0.0474 (11)
F170.53881 (19)0.2378 (4)0.0391 (2)0.0482 (11)
F180.4919 (2)0.3644 (4)−0.0295 (2)0.0534 (11)
H80.50.0703 (17)0.250.064*
H70.50.388 (2)0.250.064*
C020.50.6393 (9)0.250.061 (2)
O010.5047 (7)0.5448 (7)0.2346 (6)0.061 (2)0.5
C010.4627 (7)0.6837 (13)0.2974 (8)0.061 (2)0.5
H01A0.43390.73690.2720.091*0.5
H01B0.49040.71620.33840.091*0.5
H01C0.43980.62640.31220.091*0.5
C030.5346 (8)0.7260 (12)0.2166 (9)0.061 (2)0.5
H03A0.57570.70050.21740.091*0.5
H03B0.5380.79150.24350.091*0.5
H03C0.51140.73930.16840.091*0.5

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hf0.02293 (13)0.01426 (14)0.02648 (14)0.00092 (8)0.00681 (9)−0.00103 (9)
C10.085 (3)0.037 (2)0.088 (4)0.018 (2)0.013 (2)−0.027 (2)
C20.033 (3)0.011 (3)0.037 (3)0.001 (2)0.010 (2)−0.002 (2)
C30.029 (3)0.025 (3)0.038 (3)0.000 (2)−0.002 (2)−0.006 (3)
C40.027 (3)0.023 (3)0.027 (3)0.004 (2)0.003 (2)0.001 (2)
C50.026 (3)0.025 (3)0.054 (4)0.001 (2)−0.001 (3)−0.009 (3)
C60.047 (2)0.056 (2)0.091 (3)−0.0059 (17)0.0231 (18)0.031 (2)
C70.030 (3)0.033 (4)0.044 (4)−0.003 (3)0.009 (3)0.011 (3)
C80.036 (3)0.039 (4)0.049 (4)0.004 (3)0.025 (3)0.009 (3)
C90.032 (3)0.036 (4)0.028 (3)0.009 (3)0.005 (2)0.002 (3)
C100.052 (4)0.049 (5)0.036 (4)0.018 (3)0.021 (3)0.005 (3)
C110.034 (3)0.015 (3)0.037 (3)0.003 (2)0.002 (3)−0.001 (2)
C120.025 (3)0.020 (3)0.030 (3)0.002 (2)0.003 (2)0.000 (2)
C130.038 (3)0.026 (3)0.025 (3)0.002 (2)0.008 (2)0.002 (2)
C140.026 (3)0.029 (3)0.025 (3)−0.004 (2)0.005 (2)−0.002 (2)
C150.036 (3)0.043 (4)0.025 (3)−0.002 (3)0.010 (3)−0.007 (3)
O10.026 (2)0.017 (2)0.042 (2)−0.0005 (16)0.0075 (17)−0.0068 (18)
O20.024 (2)0.018 (2)0.033 (2)0.0006 (15)0.0045 (16)−0.0056 (16)
O30.030 (2)0.026 (2)0.041 (2)0.0005 (17)0.0111 (18)0.0059 (19)
O40.032 (2)0.024 (2)0.026 (2)0.0018 (17)0.0102 (16)0.0019 (17)
O50.033 (2)0.017 (2)0.028 (2)0.0008 (16)0.0064 (16)−0.0004 (16)
O60.035 (2)0.020 (2)0.030 (2)0.0032 (17)0.0087 (18)−0.0037 (17)
O70.028 (3)0.013 (3)0.032 (3)00.005 (2)0
O80.026 (3)0.015 (3)0.036 (3)00.001 (2)0
F1A0.085 (3)0.037 (2)0.088 (4)0.018 (2)0.013 (2)−0.027 (2)
F2A0.085 (3)0.037 (2)0.088 (4)0.018 (2)0.013 (2)−0.027 (2)
F3A0.085 (3)0.037 (2)0.088 (4)0.018 (2)0.013 (2)−0.027 (2)
F1B0.085 (3)0.037 (2)0.088 (4)0.018 (2)0.013 (2)−0.027 (2)
F2B0.085 (3)0.037 (2)0.088 (4)0.018 (2)0.013 (2)−0.027 (2)
F3B0.085 (3)0.037 (2)0.088 (4)0.018 (2)0.013 (2)−0.027 (2)
F40.036 (2)0.042 (3)0.090 (3)0.0088 (19)−0.012 (2)−0.025 (2)
F50.029 (2)0.049 (3)0.070 (3)0.0060 (17)0.015 (2)−0.006 (2)
F60.054 (3)0.040 (3)0.062 (3)0.022 (2)0.005 (2)0.011 (2)
F7A0.047 (2)0.056 (2)0.091 (3)−0.0059 (17)0.0231 (18)0.031 (2)
F8A0.047 (2)0.056 (2)0.091 (3)−0.0059 (17)0.0231 (18)0.031 (2)
F9A0.047 (2)0.056 (2)0.091 (3)−0.0059 (17)0.0231 (18)0.031 (2)
F7B0.047 (2)0.056 (2)0.091 (3)−0.0059 (17)0.0231 (18)0.031 (2)
F8B0.047 (2)0.056 (2)0.091 (3)−0.0059 (17)0.0231 (18)0.031 (2)
F9B0.047 (2)0.056 (2)0.091 (3)−0.0059 (17)0.0231 (18)0.031 (2)
F100.066 (3)0.052 (3)0.043 (2)0.035 (2)0.007 (2)−0.003 (2)
F110.132 (5)0.073 (4)0.094 (4)0.014 (4)0.089 (4)−0.001 (3)
F120.067 (3)0.070 (3)0.049 (3)0.018 (3)−0.003 (2)−0.029 (2)
F130.044 (2)0.040 (2)0.043 (2)0.0144 (18)−0.0051 (17)−0.0022 (18)
F140.061 (2)0.032 (2)0.040 (2)0.0174 (19)0.0061 (18)−0.0043 (18)
F150.060 (3)0.028 (2)0.107 (4)0.006 (2)0.039 (3)0.019 (2)
F160.053 (2)0.056 (3)0.033 (2)−0.014 (2)0.0104 (18)−0.0254 (19)
F170.038 (2)0.065 (3)0.043 (2)0.0105 (19)0.0137 (18)−0.015 (2)
F180.073 (3)0.054 (3)0.045 (2)−0.008 (2)0.034 (2)−0.001 (2)
C020.069 (4)0.032 (3)0.061 (5)0−0.019 (4)0
O010.069 (4)0.032 (3)0.061 (5)0−0.019 (4)0
C010.069 (4)0.032 (3)0.061 (5)0−0.019 (4)0
C030.069 (4)0.032 (3)0.061 (5)0−0.019 (4)0

Geometric parameters (Å, °)

Hf—O12.258 (4)C8—C91.368 (9)
Hf—O22.147 (4)C8—H20.93
Hf—O32.209 (4)C9—O41.262 (7)
Hf—O42.150 (4)C9—C101.540 (9)
Hf—O52.238 (4)C10—F101.312 (8)
Hf—O62.137 (4)C10—F121.323 (9)
Hf—O72.113 (3)C10—F111.325 (8)
Hf—O82.096 (3)C11—F141.302 (7)
C1—F3B1.286 (13)C11—F151.329 (7)
C1—F2B1.288 (13)C11—F131.337 (7)
C1—F3A1.294 (18)C11—C121.551 (8)
C1—F1A1.302 (19)C12—O51.239 (7)
C1—F1B1.389 (14)C12—C131.395 (8)
C1—F2A1.491 (18)C13—C141.365 (9)
C1—C21.514 (10)C13—H30.93
C2—O11.238 (7)C14—O61.275 (7)
C2—C31.389 (8)C14—C151.523 (8)
C3—C41.358 (8)C15—F161.318 (7)
C3—H10.93C15—F171.332 (8)
C4—O21.269 (7)C15—F181.339 (8)
C4—C51.531 (8)O7—Hfi2.113 (3)
C5—F51.309 (9)O7—H70.81 (3)
C5—F61.331 (8)O8—Hfi2.096 (3)
C5—F41.340 (7)O8—H80.81 (2)
C6—F7A1.258 (12)C02—O011.221 (14)
C6—F8B1.28 (2)C02—C011.496 (14)
C6—F9A1.311 (11)C02—C031.558 (15)
C6—F9B1.348 (19)C01—H01A0.96
C6—F7B1.38 (2)C01—H01B0.96
C6—F8A1.419 (14)C01—H01C0.96
C6—C71.532 (10)C03—H03A0.96
C7—O31.249 (7)C03—H03B0.96
C7—C81.394 (10)C03—H03C0.96
O2—Hf—O175.83 (14)F9B—C6—F8A129.3 (11)
O4—Hf—O374.36 (16)F7B—C6—F8A84.5 (11)
O6—Hf—O575.77 (14)F7A—C6—C7112.2 (8)
O8—Hf—O766.82 (18)F8B—C6—C7110.8 (10)
O8—Hf—O689.34 (11)F9A—C6—C7113.9 (8)
O7—Hf—O684.20 (11)F9B—C6—C7110.9 (11)
O8—Hf—O2145.72 (16)F7B—C6—C7108.5 (9)
O7—Hf—O2147.46 (15)F8A—C6—C7109.4 (7)
O6—Hf—O294.45 (16)O3—C7—C8126.6 (6)
O8—Hf—O4110.88 (12)O3—C7—C6114.0 (7)
O7—Hf—O479.11 (12)C8—C7—C6119.4 (6)
O6—Hf—O4145.55 (15)C9—C8—C7117.6 (6)
O2—Hf—O484.23 (15)C9—C8—H2121.2
O8—Hf—O376.26 (14)C7—C8—H2121.2
O7—Hf—O3122.16 (13)O4—C9—C8127.9 (6)
O6—Hf—O3139.27 (16)O4—C9—C10111.6 (6)
O2—Hf—O378.85 (15)C8—C9—C10120.5 (6)
O8—Hf—O5142.20 (16)F10—C10—F12107.5 (7)
O7—Hf—O577.11 (16)F10—C10—F11107.9 (6)
O2—Hf—O571.11 (14)F12—C10—F11107.8 (6)
O4—Hf—O571.25 (15)F10—C10—C9110.8 (5)
O3—Hf—O5135.93 (14)F12—C10—C9111.2 (5)
O8—Hf—O173.62 (15)F11—C10—C9111.5 (6)
O7—Hf—O1132.48 (14)F14—C11—F15108.8 (5)
O6—Hf—O169.78 (15)F14—C11—F13108.3 (5)
O4—Hf—O1141.43 (15)F15—C11—F13107.4 (5)
O3—Hf—O169.63 (15)F14—C11—C12112.5 (5)
O5—Hf—O1129.42 (15)F15—C11—C12110.7 (5)
F3B—C1—F2B108.8 (9)F13—C11—C12109.0 (5)
F2B—C1—F3A126.8 (10)O5—C12—C13127.0 (5)
F3B—C1—F1A125.3 (10)O5—C12—C11114.6 (5)
F3A—C1—F1A118.0 (12)C13—C12—C11118.3 (5)
F3B—C1—F1B100.6 (9)C14—C13—C12119.3 (6)
F2B—C1—F1B108.3 (10)C14—C13—H3120.4
F3A—C1—F1B64.3 (10)C12—C13—H3120.4
F1A—C1—F1B74.1 (11)O6—C14—C13127.4 (5)
F3B—C1—F2A55.5 (8)O6—C14—C15111.8 (5)
F2B—C1—F2A66.8 (9)C13—C14—C15120.8 (6)
F3A—C1—F2A92.2 (12)F16—C15—F17108.1 (5)
F1A—C1—F2A100.9 (11)F16—C15—F18107.2 (5)
F1B—C1—F2A147.5 (9)F17—C15—F18106.9 (5)
F3B—C1—C2116.0 (9)F16—C15—C14110.6 (5)
F2B—C1—C2115.4 (8)F17—C15—C14111.6 (5)
F3A—C1—C2117.0 (10)F18—C15—C14112.2 (5)
F1A—C1—C2117.6 (10)C2—O1—Hf133.0 (4)
F1B—C1—C2106.4 (8)C4—O2—Hf136.3 (4)
F2A—C1—C2104.2 (9)C7—O3—Hf133.8 (4)
O1—C2—C3127.4 (5)C9—O4—Hf134.4 (4)
O1—C2—C1115.0 (6)C12—O5—Hf133.5 (4)
C3—C2—C1117.5 (6)C14—O6—Hf135.3 (4)
C4—C3—C2120.4 (5)Hf—O7—Hfi112.5 (3)
C4—C3—H1119.8Hf—O7—H7123.75 (12)
C2—C3—H1119.8Hfi—O7—H7123.75 (12)
O2—C4—C3127.1 (5)Hfi—O8—Hf113.9 (3)
O2—C4—C5111.6 (5)Hfi—O8—H8123.07 (13)
C3—C4—C5121.2 (5)Hf—O8—H8123.07 (13)
F5—C5—F6108.4 (5)O01—C02—C01127.0 (10)
F5—C5—F4107.1 (6)O01—C02—C03118.5 (9)
F6—C5—F4107.3 (6)C01—C02—C03114.5 (13)
F5—C5—C4111.8 (6)C02—C01—H01A109.5
F6—C5—C4110.5 (5)C02—C01—H01B109.5
F4—C5—C4111.5 (5)H01A—C01—H01B109.5
F7A—C6—F8B123.9 (13)C02—C01—H01C109.5
F7A—C6—F9A113.4 (8)H01A—C01—H01C109.5
F8B—C6—F9A78.5 (9)H01B—C01—H01C109.5
F7A—C6—F9B86.9 (10)C02—C03—H03A109.5
F8B—C6—F9B109.2 (11)C02—C03—H03B109.5
F8B—C6—F7B107.4 (13)H03A—C03—H03B109.5
F9A—C6—F7B131.6 (10)C02—C03—H03C109.5
F9B—C6—F7B110.0 (11)H03A—C03—H03C109.5
F7A—C6—F8A105.0 (9)H03B—C03—H03C109.5
F9A—C6—F8A101.9 (8)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H7···O010.81 (3)1.98 (3)2.783 (10)170 (1)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2265).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2004). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Calderazzo, F., Englert, U., Maichle-Mossmer, C., Marchetti, F., Pampaloni, G., Petroni, D., Pinzino, C., Strahle, J. & Tripepi, G. (1998). Inorg. Chim. Acta, 270, 177–188.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827. [PMC free article] [PubMed]
  • Viljoen, J. A., Muller, A. & Roodt, A. (2008). Acta Cryst. E64, m838–m839. [PMC free article] [PubMed]
  • Zherikova, K. V., Morozova, N. B., Baidina, I. A., Alekseev, V. I. & Igumenov, I. K. (2006a). J. Struct. Chem.47, 82–86.
  • Zherikova, K. V., Morozova, N. B., Baidina, I. A., Peresypkina, E. V. & Igumenov, I. K. (2006b). J. Struct. Chem.47, 570–574.
  • Zherikova, K. V., Morozova, N. B., Kurateva, N. V., Baidina, I. A., Stabnikov, P. A. & Igumenov, I. K. (2005). J. Struct. Chem.46, 1039–1046.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography