PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1463–m1464.
Published online 2009 October 28. doi:  10.1107/S1600536809043712
PMCID: PMC2971345

Nitro­syltris(pyridine-2-thiol­ato-κ2 N,S)molybdenum(II) dihydrate

Abstract

In the title compound, [Mo(C5H4NS)3(NO)]·2H2O, the Mo atom is coordinated by a nitrosyl ligand and three monoanionic N,S-bidentate ligands in a distorted MoN4S3 penta­gonal-bipyramidal mol­ecular geometry. The pyridine N atom of one pyridine-2-thiol­ate (pyt) ligand is coordinated to the Mo atom in the trans position relative to the NO ligand [N(pyt)—Mo—N(NO) = 170.62 (19)°]. The compound has C s symmetry, with a mirror plane that includes one pyt ring and the NO group. The S—Mo—N(NO) and N(pyt)—Mo—N(NO) angles [97.24 (12) and 91.87 (8)°, respectively] are large relative to the ideal angles of 90°. In the crystal, the mol­ecules pack in a zigzag arrangement. The cavities between the mol­ecules are occupied by disordered water mol­ecules of crystallization.

Related literature

For the synthesis and chemistry of similar nitrosyl, pyridine­thilato, or pyrimidine­thiol­ato derivative complexes, see: Halpenny & Mascharak (2009 [triangle]); Rose et al. (2007 [triangle]); Cini et al. (2003 [triangle]); Maurya et al. (2006 [triangle]); Kunkely & Vogler (2003 [triangle]); Ford et al. (1998 [triangle]); Proust et al. (1994 [triangle]); Ardon & Cohen (1993 [triangle]); Calderon et al. (1969 [triangle]); Yonemura et al. (2006 [triangle], 2001 [triangle]); Bucher et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1463-scheme1.jpg

Experimental

Crystal data

  • [Mo(C5H4NS)3(NO)]·2H2O
  • M r = 492.44
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1463-efi2.jpg
  • a = 15.7519 (16) Å
  • b = 14.8889 (14) Å
  • c = 9.0535 (12) Å
  • V = 2123.3 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.93 mm−1
  • T = 296 K
  • 0.45 × 0.40 × 0.25 mm

Data collection

  • Rigaku AFC-7S diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.727, T max = 0.792
  • 3681 measured reflections
  • 2540 independent reflections
  • 2088 reflections with I > 2σ(I)
  • R int = 0.023
  • 3 standard reflections every 150 reflections intensity decay: 1.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.126
  • S = 1.13
  • 2540 reflections
  • 144 parameters
  • H-atom parameters constrained
  • Δρmax = 1.14 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: WinAFC (Rigaku/MSC, 2000 [triangle]); cell refinement: WinAFC; data reduction: CrystalStructure (Rigaku/MSC, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: CrystalStructure.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043712/su2152sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043712/su2152Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was partially supported by Grants-in-Aid for Scientific Research C (No. 20550138) from the Japanese Society for the Promotion of Science (JSPS). The authors are grateful to Kochi University for financial support (The Kochi University President’s Discretionary Grant 2009).

supplementary crystallographic information

Comment

In recent years, pyridinethiolate- or pyrimidinethiolate-type ligands and their complexes have been investigated as antimetabolite and antiviral agents, as well as for their unique photochemical properties (Halpenny & Mascharak, 2009; Rose et al., 2007; Cini et al., 2003). For example, attempts to regulate NO in vivo have prompted studies of NO scavengers and NO-releasing drugs. Although some photoinduced NO-releasing reactions of mononitrosyl complexes have been reported, relatively little is known about the analogous reactions of dinitrosyl complexes in this respect (Maurya et al., 2006; Kunkely & Vogler, 2003; Ford et al., 1998). We previously reported on the preparation, characterization and interesting photo-dimerization reactions of some dinitrosyl-molybdenum complexes containing thiolate ligands, which were accompanied by NO cleavage (Yonemura et al., 2001, 2006). This highlighted the need to further study the reactivities and properties of these dinitrosyl-molybdenum complexes. That communication described a novel reaction of dinitrosyl-molybdenum [Mo(bidentate-N,S)2(NO)2]-type complexes with PPh3 (Yonemura, et al., 2006). This reaction, which uses pyridine-2-thiolate (pyt) as a thiolate ligand, was shown to form [Mo(pyt)3(NO)], [{(ON)Mo(pyt)2}2(µ-OH)2], and Ph3PO. In this paper, we report on the structure of [Mo(pyt)3(NO)] Dihydrate.

In the title compound the molybdenum atom is coordinated to a nitrosyl ligand and three monoanionic N,S- bidentate ligands, producing a distorted MoN5S2 pentagonal bipyramidal molecular geometry (Fig. 1 and Table 1). The geometrical parameters are available in the archived CIF. This complex is derived from the elimination of one NO ligand from [Mo(pyt)2(NO)2] and the introduction of a third pyt ligand, giving rise to a Mo atom surrounded by three pyt ligands and one NO ligand. The complex adopts a seven-coordinate structure with a distorted pentagonal bipyramidal coordination geometry about the Mo atom. Both the N and S atoms of two pyt ligands and an S atom of the third pyt ligand occupy the equatorial positions of the complex. The remaining N-atom of the third pyt ligand occupies one of the axial sites. The NO ligand occupies the other axial site in its linear mode [Mo1—N3—O1 = 179.6 (4)°], indicating that the NO ligand is coordinated as NO+ (Proust et al., 1994; Ardon & Cohen, 1993; Calderon et al., 1969). Therefore, the oxidation state of the molybdenum atom in the title compound is formally +II; that is, the molybdenum atom is oxidized from 0 to +II.

The Mo—S distances are 2.5240 (12) and 2.4815 (16) Å, compared to 2.497 (3) and 2.477 (3) Å in complex [Mo(pymt)2(NO)2] (Yonemura et al., 2001), and 2.4870 (7) Å in [Mo(aet)2(NO)2] (Bucher et al., 2008). In this latter complex, the Mo—N2 distance ( 2.228 (3) Å), corresponding to the N trans to the NO ligand, is almost the same as the other Mo—N distance in the title compound (Mo1—N1 = 2.218 (5) Å). The Mo1—NO distance ( 1.777 (5) Å) in the title compound is significantly shorter than those in complex es [Mo(pymt)2(NO)2] (1.814 (8) and 1.84 (1) Å), and [Mo(aet)2(NO)2] (1.828 (2) and 1.837 (2) Å). However, the Mo1—NO distance is almost the same as that in complex [{(ON)Mo(pyt)2}2(µ-OH)2], that is 1.756 (2) Å (Yonemura et al., 2001). The S1—Mo1—N3(NO) and N1—Mo1—N3(NO) angles (97.24 (12) and 91.87 (8)°, respectively) are large compared to the corresponding angles (95.71 (6), 94.48 (7) and 86.36 (8), 88.12 (8)°, respectively) in [{(ON)Mo(pyt)2}2(µ-OH)2].

In the crystal the molecules pack in a zigzag arrangement (Fig. 2). The cavities between the molecules are occupied by disordered water molecules of crystallization.

Experimental

A solution of [Mo(pyt)2(NO)2] (0.25 g, 0.65 mmol) in N,N-dimethylformamide (DMF) and PPh3 (0.37 g, 1.41 mmol) in tetrahydrofuran (THF) was stirred at rt for 4 days to produce an orange solution. Yellow precipitates of [{(ON)Mo(pyt)2}2(µ-OH)2] and [Mo(pyt)3(NO)] were obtained by allowing the reaction solution to stand in a refrigerator for a few days. The resulting orange-yellow crystals were collected by filtration. The filtrate was then poured into water, and the precipitate produced was collected by filtration and recrystallized from an acetone solution to give orange-yellow crystals of the title compound (23% yield). Anal. Calcd for [Mo(pyt)3(NO)] = C16H16MoN4O2S3: C 25.53, H 1.55, N 22.13%, Found: C 25.70, H 1.61, N 21.98%. IR [KBr; νmax,, cm-1]: 1644 (NO), 1582, 1551(CC, CN), 1447, 1420 (NC, CH), 1260 (CS). 13C NMR (acetone-d6): δ 176.5, 149.1, 148.2, 140.3, 140.1, 126.8, 126.5, 119.9, 118.7.

Refinement

The water molecules of solvent of crystallization are disordered with occupancies of 0.5 each, and it was not possible to locate their H-atoms. The C-bound H-atom were included in calculated positions and treated as riding: C—H = 0.93 Å, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A view of the molecular structure of the title compound, showing the atom-labelling scheme and 50% probability displacement ellipsoids. Atoms related by the mirror symmetry are marked by *; symmetry operation: x, -y+1/2, z.
Fig. 2.
Crystal packing diagram of the title compound viewed along the c axis (some H-atoms have been omitted for clarity).

Crystal data

[Mo(C5H4NS)3(NO)]·2H2OF(000) = 992.00
Mr = 492.44Dx = 1.540 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2nCell parameters from 25 reflections
a = 15.7519 (16) Åθ = 15.4–17.4°
b = 14.8889 (14) ŵ = 0.93 mm1
c = 9.0535 (12) ÅT = 296 K
V = 2123.3 (4) Å3Prismatic, orange
Z = 40.45 × 0.40 × 0.25 mm

Data collection

Rigaku AFC-7S diffractometerRint = 0.023
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan (North et al., 1968)h = 0→20
Tmin = 0.727, Tmax = 0.792k = −10→19
3681 measured reflectionsl = −11→6
2540 independent reflections3 standard reflections every 150 reflections
2088 reflections with F2 > 2σ(F2) intensity decay: −1.3%

Refinement

Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039w = 1/[σ2(Fo2) + (0.0621P)2 + 2.5132P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.126(Δ/σ)max = 0.002
S = 1.13Δρmax = 1.14 e Å3
2540 reflectionsΔρmin = −0.64 e Å3
144 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
0 restraintsExtinction coefficient: 0.0029 (5)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Mo10.17875 (3)0.250000.95698 (4)0.0359 (1)
S10.07755 (7)0.15176 (7)1.10056 (12)0.0512 (3)
S20.25067 (10)0.250000.71312 (17)0.0516 (4)
O10.3191 (3)0.250001.1749 (5)0.0667 (14)
N10.0907 (3)0.250000.7658 (5)0.0427 (12)
N20.1905 (2)0.1024 (2)0.9222 (3)0.0427 (9)
N30.2627 (3)0.250001.0881 (5)0.0423 (12)
C10.1292 (2)0.0662 (2)1.0080 (4)0.0420 (10)
C20.1159 (3)−0.0257 (2)1.0145 (4)0.0520 (12)
C30.1680 (3)−0.0801 (3)0.9319 (5)0.0627 (14)
C40.2315 (3)−0.0437 (3)0.8467 (5)0.0653 (16)
C50.2415 (2)0.0478 (3)0.8434 (5)0.0560 (12)
C60.1452 (4)0.250000.6512 (6)0.0477 (14)
C70.0065 (4)0.250000.7415 (8)0.0570 (17)
C8−0.0257 (5)0.250000.5987 (9)0.077 (3)
C90.0308 (6)0.250000.4820 (8)0.080 (3)
C100.1160 (5)0.250000.5066 (7)0.066 (2)
O21−0.0333 (11)0.4696 (10)0.609 (2)0.258 (12)0.500
O220.0678 (7)0.5119 (9)0.5891 (12)0.128 (5)0.500
H10.07300−0.049801.073000.0630*
H20.16030−0.142100.933600.0750*
H30.26730−0.080700.792000.0780*
H40.284300.072600.785500.0670*
H5−0.030700.250000.821300.0690*
H6−0.083900.250000.582000.0920*
H70.010400.250000.385700.0960*
H80.154000.250000.428000.0790*
H9−0.011200.484600.542800.3170*0.500
H10−0.056900.482400.657300.3170*0.500
H110.028400.510900.602700.1900*0.500
H120.082400.494800.498300.1900*0.500

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mo10.0365 (2)0.0382 (2)0.0330 (2)0.00000.0017 (2)0.0000
S10.0579 (5)0.0446 (5)0.0510 (5)−0.0049 (4)0.0178 (4)−0.0019 (4)
S20.0495 (7)0.0588 (8)0.0464 (7)0.00000.0145 (6)0.0000
O10.066 (2)0.074 (3)0.060 (2)0.0000−0.025 (2)0.0000
N10.045 (2)0.049 (2)0.034 (2)0.0000−0.0012 (18)0.0000
N20.0440 (16)0.0440 (17)0.0401 (15)0.0014 (13)0.0003 (12)−0.0030 (13)
N30.044 (2)0.042 (2)0.041 (2)0.0000−0.0001 (19)0.0000
C10.0457 (19)0.0416 (18)0.0387 (17)0.0002 (15)−0.0037 (15)−0.0016 (14)
C20.063 (2)0.044 (2)0.049 (2)−0.0051 (19)−0.0008 (19)0.0026 (17)
C30.085 (3)0.039 (2)0.064 (2)0.004 (2)−0.011 (2)−0.0020 (19)
C40.072 (3)0.051 (2)0.073 (3)0.017 (2)0.007 (2)−0.008 (2)
C50.054 (2)0.056 (2)0.058 (2)0.0076 (19)0.0063 (19)−0.004 (2)
C60.057 (3)0.047 (2)0.039 (2)0.00000.005 (2)0.0000
C70.047 (3)0.068 (3)0.056 (3)0.0000−0.003 (2)0.0000
C80.070 (4)0.099 (6)0.061 (4)0.0000−0.023 (3)0.0000
C90.095 (6)0.103 (6)0.043 (3)0.0000−0.019 (3)0.0000
C100.084 (5)0.079 (4)0.034 (2)0.00000.006 (3)0.0000
O210.213 (18)0.132 (13)0.43 (3)0.100 (12)−0.21 (2)−0.171 (17)
O220.104 (7)0.164 (11)0.117 (7)0.009 (7)−0.024 (6)0.001 (8)

Geometric parameters (Å, °)

Mo1—S12.5240 (12)N2—C51.347 (5)
Mo1—S22.4815 (16)C1—C21.386 (4)
Mo1—N12.218 (5)C2—C31.374 (6)
Mo1—N22.228 (3)C3—C41.375 (7)
Mo1—N31.777 (5)C4—C51.372 (6)
Mo1—S1i2.5240 (12)C6—C101.388 (9)
Mo1—N2i2.228 (3)C7—C81.389 (11)
S1—C11.728 (3)C8—C91.381 (12)
S2—C61.753 (6)C9—C101.360 (12)
O1—N31.186 (7)C2—H10.9300
O21—O221.72 (2)C3—H20.9300
O21—H100.6000C4—H30.9300
O21—H90.7300C5—H40.9300
O22—H120.8900C7—H50.9300
O22—H110.6300C8—H60.9300
N1—C61.347 (7)C9—H70.9300
N1—C71.344 (8)C10—H80.9300
N2—C11.351 (4)
S1—Mo1—S2138.29 (3)Mo1—N3—O1179.6 (4)
S1—Mo1—N190.40 (10)N2—C1—C2121.8 (3)
S1—Mo1—N263.49 (8)S1—C1—N2108.7 (2)
S1—Mo1—N397.24 (12)S1—C1—C2129.5 (3)
S1—Mo1—S1i70.83 (4)C1—C2—C3118.0 (4)
S1—Mo1—N2i134.18 (8)C2—C3—C4120.5 (4)
S2—Mo1—N165.87 (13)C3—C4—C5119.2 (4)
S2—Mo1—N280.58 (7)N2—C5—C4121.3 (4)
S2—Mo1—N3104.75 (15)N1—C6—C10121.0 (6)
S1i—Mo1—S2138.29 (3)S2—C6—N1111.0 (4)
S2—Mo1—N2i80.58 (7)S2—C6—C10128.0 (5)
N1—Mo1—N286.66 (8)N1—C7—C8120.8 (6)
N1—Mo1—N3170.62 (19)C7—C8—C9118.5 (7)
S1i—Mo1—N190.40 (10)C8—C9—C10120.7 (7)
N1—Mo1—N2i86.66 (8)C6—C10—C9118.8 (6)
N2—Mo1—N391.87 (8)C1—C2—H1121.00
S1i—Mo1—N2134.18 (8)C3—C2—H1121.00
N2—Mo1—N2i161.13 (11)C2—C3—H2120.00
S1i—Mo1—N397.24 (12)C4—C3—H2120.00
N2i—Mo1—N391.87 (8)C5—C4—H3120.00
S1i—Mo1—N2i63.49 (8)C3—C4—H3120.00
Mo1—S1—C183.12 (11)N2—C5—H4119.00
Mo1—S2—C681.48 (19)C4—C5—H4119.00
H9—O21—H10142.00N1—C7—H5120.00
H11—O22—H12115.00C8—C7—H5120.00
Mo1—N1—C6101.7 (4)C7—C8—H6121.00
C6—N1—C7120.2 (5)C9—C8—H6121.00
Mo1—N1—C7138.1 (4)C8—C9—H7120.00
Mo1—N2—C5136.0 (3)C10—C9—H7120.00
C1—N2—C5119.3 (3)C9—C10—H8121.00
Mo1—N2—C1104.6 (2)C6—C10—H8121.00
S2—Mo1—S1—C132.54 (14)Mo1—S1—C1—N21.4 (2)
N1—Mo1—S1—C185.19 (14)Mo1—S1—C1—C2−179.6 (4)
N2—Mo1—S1—C1−0.87 (14)Mo1—S2—C6—N10.00
N3—Mo1—S1—C1−89.34 (15)Mo1—S2—C6—C10180.00
S1i—Mo1—S1—C1175.48 (12)Mo1—N1—C6—S20.00
N2i—Mo1—S1—C1170.92 (16)Mo1—N1—C6—C10180.00
S1—Mo1—S2—C660.58 (6)C7—N1—C6—S2180.00
N1—Mo1—S2—C60.00C7—N1—C6—C100.00
N2—Mo1—S2—C690.55 (8)Mo1—N1—C7—C8180.00
N3—Mo1—S2—C6−180.00C6—N1—C7—C80.00
S1—Mo1—N1—C6−144.58 (2)Mo1—N2—C1—S1−1.6 (3)
S1—Mo1—N1—C735.42 (2)Mo1—N2—C1—C2179.3 (3)
S2—Mo1—N1—C60.00C5—N2—C1—S1177.5 (3)
S2—Mo1—N1—C7180.00C5—N2—C1—C2−1.6 (5)
N2—Mo1—N1—C6−81.17 (8)Mo1—N2—C5—C4179.9 (3)
N2—Mo1—N1—C798.83 (8)C1—N2—C5—C41.1 (6)
S1—Mo1—N2—C11.14 (19)S1—C1—C2—C3−178.1 (3)
S1—Mo1—N2—C5−177.8 (4)N2—C1—C2—C30.8 (6)
S2—Mo1—N2—C1−157.1 (2)C1—C2—C3—C40.4 (6)
S2—Mo1—N2—C524.1 (3)C2—C3—C4—C5−0.9 (7)
N1—Mo1—N2—C1−91.0 (2)C3—C4—C5—N20.2 (7)
N1—Mo1—N2—C590.1 (4)S2—C6—C10—C9180.00
N3—Mo1—N2—C198.3 (3)N1—C6—C10—C90.00
N3—Mo1—N2—C5−80.6 (4)N1—C7—C8—C90.00
S1i—Mo1—N2—C1−3.7 (3)C7—C8—C9—C100.00
S1i—Mo1—N2—C5177.4 (3)C8—C9—C10—C60.00

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O21—H9···O220.731.371.72 (2)106
C5—H4···S20.932.773.237 (5)112

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2152).

References

  • Ardon, M. & Cohen, S. (1993). Inorg. Chem.32, 3241–3243.
  • Bucher, J., Blacque, O., Schmalle, H. W. & Berke, H. (2008). Acta Cryst. C64, m87–m90. [PubMed]
  • Calderon, J. L., Cotton, F. A. & Legzdins, P. (1969). J. Am. Chem. Soc.91, 2528–2535.
  • Cini, R., Tamasi, G., Defazio, S., Corsini, M., Zanello, P., Messori, L., Marcon, G., Piccioli, F. & Orioli, P. (2003). Inorg. Chem.42, 8038–8052. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ford, P. C., Bourassa, J., Mianda, K., Lee, B., Lorkovic, I., Boggs, S., Kudo, S. & Laverman, L. (1998). Coord. Chem. Rev.171, 185–202.
  • Halpenny, G. M. & Mascharak, P. K. (2009). Inorg. Chem.48, 1490–1497. [PubMed]
  • Kunkely, H. & Vogler, A. (2003). Inorg. Chim. Acta, 346, 275–277.
  • Maurya, R. C., Pandey, A., Chaurasia, J. & Martin, H. (2006). J. Mol. Struct.798, 89–101.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Proust, A., Gouzerh, P. & Robert, F. (1994). J. Chem. Soc. Dalton Trans. pp. 825–833.
  • Rigaku/MSC (2000). WinAFC Rigaku/MSC, The Woodlands, Texas, USA.
  • Rigaku/MSC (2007). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Rose, M. J., Patra, A. K. & Mascharak, P. K. (2007). Inorg. Chem.46, 2328–2338. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yonemura, T., Hashimoto, T., Hasegawa, M., Ikenoue, T., Ama, T. & Kawaguchi, H. (2006). Inorg. Chem. Commun.9, 183–186.
  • Yonemura, T., Nakata, J., Kadoda, M., Hasegawa, M., Okamoto, K., Ama, T., Kawaguchi, H. & Yasui, T. (2001). Inorg. Chem. Commun.4, 661–663.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography