PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2744.
Published online 2009 October 17. doi:  10.1107/S1600536809041488
PMCID: PMC2971342

4-Methyl­anilinium nitrate

Abstract

The asymmetric unit of the title compound, C7H10N+·NO3 , consists of a 4-methyl­anilinium cation protonated at the amino group and a nitrate anion. In the crystal, anions and cations are linked through N—H(...)O and N—H(...)(O,O) hydrogen bonds, buiding a corrugated layer structure parallel to (001).

Related literature

For related structures, see: Benali-Cherif, Kateb et al. (2007 [triangle]); Benali-Cherif, Allouche et al. (2007 [triangle]); Benali-Cherif, Boussekine et al. (2007 [triangle]); Asath Bahadur et al. (2007 [triangle]). For the bio­logical effects of toluidine exposure in man, see: Kennedy et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2744-scheme1.jpg

Experimental

Crystal data

  • C7H10N+·NO3
  • M r = 170.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2744-efi1.jpg
  • a = 5.6725 (9) Å
  • b = 8.5507 (8) Å
  • c = 17.621 (2) Å
  • β = 98.771 (2)°
  • V = 844.69 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 100 K
  • 0.2 × 0.15 × 0.1 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 24550 measured reflections
  • 2791 independent reflections
  • 1228 reflections with I > 2σ(I)
  • R int = 0.089

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.125
  • S = 0.91
  • 2791 reflections
  • 111 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: KappaCCD (Nonius, 1998 [triangle]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and CAMERON (Pearce et al., 2000 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041488/dn2484sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041488/dn2484Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We wish to thank Dr C. Lecomte, Dr S. Dahaoui and Dr E.-E. Bendeif, LCM 3B (UMR UHP–CNRS 7036), Faculté des Sciences et Techniques 54506 Vandoeuvre-lés-Nancy CEDEX, for providing diffraction facilities, and le Centre Universitaire Abbes Laghrour-Khenchela for financial support.

supplementary crystallographic information

Comment

p-toluidine is an organic benzene derivative with a methyl substituent and an amino group, the name is derived from toluene and aniline. Its physical appearance is that of white lustrous plates or leaflets with an amine odour. p-toluidine can cause anoxia (due to formation of methemoglobin) and hematuria in man. The substance irritates the eyes and the skin and may cause effects on the blood, bladder and kidneys, resulting in tissue lesions and formation of methamoglobin (Kennedy et al., 1984). The crystal structure of p-methylanilinium nitrate, (I), was determined as part of our investigations on the structural characteristicsof organic-inorganic layered compounds and an ongoing study on DH···A hydrogen-bonding in systems of hybrid materials including anilinium derivatives such as, 3-hydroxyanilinium hydrogensulfate (Benali-Cherif, Kateb et al., 2007), o-methylanilinium nitrate (Benali-Cherif, Boussekine et al., 2007), 2-carboxyanilinium dihydrogenphosphate (Benali-Cherif, Allouche et al., 2007) and 2-carboxyanilinium nitrate (Bahadur et al., 2007).

The asymmetric unit of (I) contains a monoprotonated p-methylanilinium cation and nitrate anion link trough N-H···O hydrogen bond (Figure 1). Intra atomic bond distances and angles confirm the monprotonation of the organic entity. There are differences in the N—O distances of nitrate anion N2—O2, N2–03 (1.260 (2) Å, 1.276 (2) Å) are longer than N2—O1 (1.232 (2) Å), this is the due that only the O2 and O3 atoms are involved in hydrogen bonds of types N—H ··· O. (Table 1). The structure of (C7H10N+. NO3-) is composed of cationic (C7H10N+) and anionic (NO3-) linked through N-H···O hydrogren bonds and building up a corrugated layers parallel to the (0 0 1) plane (Table 1, Figure 2).

Experimental

Single crystals of the title compound are prepared by slow evaporation at room temperature of an aqueous solution of p-methylaniline (C7H9N) and nitric acid in the stoichiometric ratio 1:1.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and N—H = 0.89 Å with Uiso(H) = 1.2Ueq(aromatic) or Uiso(H) = 1.5Ueq(methyl,N).

Figures

Fig. 1.
Molecular view of compound I with the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small sphere of arbitray radii. Hydrogen bond is shown as dashed line.
Fig. 2.
Partial packing view of the hydrogen-bonding network.

Crystal data

C7H10N+·NO3F(000) = 360
Mr = 170.17Dx = 1.338 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 24550 reflections
a = 5.6725 (9) Åθ = 2.7–31.5°
b = 8.5507 (8) ŵ = 0.11 mm1
c = 17.621 (2) ÅT = 100 K
β = 98.771 (2)°Prism, brown
V = 844.69 (18) Å30.2 × 0.15 × 0.1 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer1228 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.089
graphiteθmax = 31.5°, θmin = 2.7°
ω–θ scansh = −8→5
24550 measured reflectionsk = −12→12
2791 independent reflectionsl = −25→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 0.91w = 1/[σ2(Fo2) + (0.0589P)2] where P = (Fo2 + 2Fc2)/3
2791 reflections(Δ/σ)max = 0.001
111 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4327 (3)0.15225 (17)0.90563 (9)0.0212 (4)
C20.2258 (3)0.23416 (18)0.91199 (10)0.0251 (4)
H20.09790.23420.87210.030*
C30.2140 (3)0.31609 (19)0.97933 (10)0.0280 (4)
H30.07520.37050.98430.034*
C40.4025 (3)0.31936 (17)1.03941 (10)0.0261 (4)
C50.6101 (3)0.23714 (18)1.03075 (9)0.0265 (4)
H50.73960.23861.07010.032*
C60.6249 (3)0.15283 (17)0.96364 (9)0.0239 (4)
H60.76290.09790.95830.029*
C70.3867 (4)0.4121 (2)1.11156 (10)0.0347 (5)
H7A0.43330.51841.10440.052*
H7B0.49110.36701.15390.052*
H7C0.22570.40991.12220.052*
N10.4466 (2)0.06544 (14)0.83447 (7)0.0236 (3)
H1A0.59270.02630.83610.035*
H1B0.41470.12960.79450.035*
H1C0.3409−0.01220.82980.035*
N20.5736 (3)0.35591 (15)0.71667 (8)0.0249 (3)
O10.7537 (2)0.31274 (13)0.75970 (7)0.0311 (3)
O20.5852 (2)0.45260 (13)0.66347 (7)0.0339 (3)
O30.3676 (2)0.30432 (13)0.72457 (7)0.0295 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0282 (9)0.0117 (7)0.0233 (9)−0.0041 (7)0.0031 (7)0.0006 (6)
C20.0245 (9)0.0180 (8)0.0312 (10)−0.0018 (7)−0.0012 (7)0.0002 (7)
C30.0290 (10)0.0182 (8)0.0373 (11)0.0018 (7)0.0066 (8)−0.0007 (7)
C40.0381 (10)0.0130 (7)0.0285 (10)−0.0053 (7)0.0095 (8)0.0016 (7)
C50.0333 (10)0.0207 (8)0.0241 (10)−0.0042 (7)0.0001 (8)0.0029 (7)
C60.0261 (9)0.0167 (8)0.0291 (10)0.0000 (7)0.0051 (7)0.0036 (7)
C70.0524 (12)0.0222 (8)0.0305 (11)−0.0023 (8)0.0097 (9)−0.0023 (7)
N10.0277 (8)0.0166 (6)0.0260 (8)−0.0014 (6)0.0022 (6)0.0002 (6)
N20.0290 (8)0.0169 (7)0.0279 (8)0.0011 (6)0.0018 (7)−0.0022 (6)
O10.0276 (7)0.0305 (7)0.0326 (7)0.0051 (6)−0.0038 (6)0.0023 (6)
O20.0354 (7)0.0252 (6)0.0397 (8)−0.0020 (6)0.0008 (6)0.0139 (6)
O30.0277 (7)0.0267 (6)0.0338 (7)−0.0015 (5)0.0041 (5)0.0052 (5)

Geometric parameters (Å, °)

C1—C61.376 (2)C6—H60.9300
C1—C21.386 (2)C7—H7A0.9600
C1—N11.470 (2)C7—H7B0.9600
C2—C31.388 (2)C7—H7C0.9600
C2—H20.9300N1—H1A0.8900
C3—C41.385 (2)N1—H1B0.8900
C3—H30.9300N1—H1C0.8900
C4—C51.399 (2)N2—O11.2325 (17)
C4—C71.513 (2)N2—O21.2592 (16)
C5—C61.398 (2)N2—O31.2759 (17)
C5—H50.9300
C6—C1—C2121.53 (15)C5—C6—H6120.4
C6—C1—N1119.74 (14)C4—C7—H7A109.5
C2—C1—N1118.73 (14)C4—C7—H7B109.5
C1—C2—C3118.41 (16)H7A—C7—H7B109.5
C1—C2—H2120.8C4—C7—H7C109.5
C3—C2—H2120.8H7A—C7—H7C109.5
C4—C3—C2122.09 (16)H7B—C7—H7C109.5
C4—C3—H3119.0C1—N1—H1A109.5
C2—C3—H3119.0C1—N1—H1B109.5
C3—C4—C5118.08 (16)H1A—N1—H1B109.5
C3—C4—C7121.01 (16)C1—N1—H1C109.5
C5—C4—C7120.90 (17)H1A—N1—H1C109.5
C6—C5—C4120.75 (16)H1B—N1—H1C109.5
C6—C5—H5119.6O1—N2—O2121.47 (14)
C4—C5—H5119.6O1—N2—O3121.07 (14)
C1—C6—C5119.14 (16)O2—N2—O3117.45 (14)
C1—C6—H6120.4

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1B···O30.891.932.8032 (17)167
N1—H1A···O2i0.891.932.8208 (18)177
N1—H1C···O3ii0.892.112.9461 (17)157
N1—H1C···O2ii0.892.463.1726 (18)138

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2484).

References

  • Bahadur, S. A., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o2722–o2723.
  • Benali-Cherif, N., Allouche, F., Direm, A., Boukli-H-Benmenni, L. & Soudani, K. (2007). Acta Cryst. E63, o2643–o2645.
  • Benali-Cherif, N., Boussekine, H., Boutobba, Z. & Kateb, A. (2007). Acta Cryst. E63, o3287.
  • Benali-Cherif, N., Kateb, A., Boussekine, H., Boutobba, Z. & Messai, A. (2007). Acta Cryst. E63, o3251.
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kennedy, G. L., Chen, H. C. & Hall, G. T. (1984). Food Chem. Toxicol.22, 289–292. [PubMed]
  • Nonius (1998). KappaCCD Server Software Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Pearce, L., Prout, C. K. & Watkin, D. J. (2000). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography