PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2648.
Published online 2009 October 3. doi:  10.1107/S160053680903815X
PMCID: PMC2971337

2-Bromo-1,3-bis­(4-chloro­phen­yl)prop-2-en-1-one

Abstract

In the title compound, C15H9BrCl2O, the two benzene rings are twisted from each other with a dihedral angle of 47.33 (8)°. The crystal structure is stabilized by aromatic π–π inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.680 (2) Å], and by weak inter­molecular C—H(...)O and C—H(...)Cl inter­actions. Additionally, the crystal structure exhibits a short intra­molecular C—H(...)Br contact (H(...)Br = 2.69 Å).

Related literature

For background on chalcones as possible nonlinear optical materials, see: Harrison et al. (2006 [triangle]). For related structures with the same backbone and different substituents on the aromatic rings, see: Butcher et al. (2006 [triangle], 2007 [triangle]); Dhanasekaran et al. (2007a [triangle],b [triangle]); Fun et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2648-scheme1.jpg

Experimental

Crystal data

  • C15H9BrCl2O
  • M r = 356.03
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2648-efi1.jpg
  • a = 7.7416 (3) Å
  • b = 9.7981 (4) Å
  • c = 9.6717 (3) Å
  • β = 109.075 (2)°
  • V = 693.34 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.34 mm−1
  • T = 120 K
  • 0.18 × 0.16 × 0.06 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.585, T max = 0.824
  • 12526 measured reflections
  • 3129 independent reflections
  • 2873 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.079
  • S = 1.04
  • 3129 reflections
  • 172 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 1.20 e Å−3
  • Δρmin = −0.46 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1434 Friedel pairs
  • Flack parameter: 0.044 (9)

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]), SCALEPACK and SORTAV (Blessing, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected torsion angles (°)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680903815X/lx2111sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903815X/lx2111Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the EPSRC UK National Crystallography Service (University of Southampton) for the data collection.

supplementary crystallographic information

Comment

As part of our ongoing investigations of chalcone derivatives as possible non-linear optical materials (Harrison et al., 2006), we now report the synthesis and structure of the noncentrosymmetric title compound, (I), (Fig 1.).

The molecule adopts a twisted conformation with the dihedral angle between ring A (C1-C6) and ring B (C10-C15) being 47.33 (8)°. Some of the atoms bonded to the benzene rings deviate significantly from their attached ring planes: Cl1 and C7 deviate by 0.106 (5) and 0.140 (6)Å respectively from the mean plane of C1-C6 and Cl2 and C9 deviate by 0.028 (5) and 0.063 (6)Å from the mean plane of C10-C15. The dihedral angles between atoms C7/C8/C9 and ring planes A and B are 55.9 (2) and 20.1 (3)°, respectively. The strongly twisted conformation (Table 1) may arise, in part, to relieve the short intramolecular H1···H9 contact of 2.35 Å. A short intramolecular C–H···Br contact occurs (Table 1).

The crystal packing for (I) is influenced by weak intermolecular C–H···O and C–H···Cl interactions (Table 2), resulting in a noncentrosymmetric structure. The C–H···O links lead to chains propagating in [010], which appear to be reinforced by aromatic π–π stacking between the A and B rings [centroid-centroid separation = 3.680 (2) Å; inter-plane angle = 10.82 (19)°]. The weaker C–H···Cl interaction also generates [010] chains and together, the non-classical bonds lead to (100) sheets.

Experimental

2,3-Dibromo-1,3-[bis(4-chlorophenyl)]-2-propan-1-one (4.32 g, 0.01 mol) was mixed with triethylamine (5 ml, 0.05 mol) in toluene (100 ml). The mixture was stirred well for 24 hrs and the precipitated ethylenehydrobromide was filtered off and the solvent was removed under reduced pressure. The resulting solid mass obtained on cooling was collected by filtration. The compound was dried and recrystallized four times with ethanol to yield colourless blocks of (I). Yield: 60%; m. p.: 325-328 K; analysis for C15H9BrCl2O: found (calculated): C: 18.01 (18.02); H: 9.15 (9.07).

Refinement

The H atoms were placed in calculated positions (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The highest difference peak is 0.96Å from O1.

Figures

Fig. 1.
View of the molecular structure of (I) showing 50% displacement ellipsoids. The H atoms are drawn as spheres of arbitrary radius.

Crystal data

C15H9BrCl2OF(000) = 352
Mr = 356.03Dx = 1.705 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 13953 reflections
a = 7.7416 (3) Åθ = 2.9–27.5°
b = 9.7981 (4) ŵ = 3.34 mm1
c = 9.6717 (3) ÅT = 120 K
β = 109.075 (2)°Block, colourless
V = 693.34 (5) Å30.18 × 0.16 × 0.06 mm
Z = 2

Data collection

Nonius KappaCCD diffractometer3129 independent reflections
Radiation source: fine-focus sealed tube2873 reflections with I > 2σ(I)
graphiteRint = 0.040
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω and [var phi] scansh = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2003)k = −12→12
Tmin = 0.585, Tmax = 0.824l = −12→12
12526 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.079w = 1/[σ2(Fo2) + (0.0258P)2 + 0.5496P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3129 reflectionsΔρmax = 1.20 e Å3
172 parametersΔρmin = −0.46 e Å3
1 restraintAbsolute structure: Flack (1983), 1434 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.044 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.5669 (5)0.6271 (3)0.7407 (4)0.0255 (8)
H10.57610.56210.67060.031*
C20.6586 (5)0.6046 (4)0.8887 (4)0.0266 (8)
H20.72960.52450.92060.032*
C30.6438 (4)0.7025 (4)0.9891 (3)0.0241 (6)
C40.5385 (5)0.8181 (4)0.9458 (4)0.0288 (8)
H40.52830.88251.01600.035*
C50.4479 (5)0.8387 (4)0.7982 (4)0.0292 (8)
H50.37530.91820.76700.035*
C60.4622 (5)0.7436 (3)0.6945 (4)0.0250 (8)
C70.3742 (5)0.7800 (4)0.5351 (4)0.0277 (8)
C80.3109 (5)0.6665 (4)0.4271 (4)0.0271 (8)
C90.2468 (5)0.5475 (4)0.4610 (4)0.0252 (8)
H90.25750.54160.56150.030*
C100.1645 (5)0.4256 (4)0.3785 (4)0.0237 (7)
C110.1567 (5)0.3124 (4)0.4629 (4)0.0304 (8)
H110.20570.31880.56650.037*
C120.0786 (5)0.1897 (4)0.3994 (4)0.0341 (9)
H120.07740.11190.45780.041*
C130.0028 (5)0.1849 (4)0.2478 (4)0.0303 (8)
C140.0093 (5)0.2951 (4)0.1604 (4)0.0316 (9)
H14−0.04270.28900.05700.038*
C150.0928 (5)0.4146 (4)0.2258 (4)0.0276 (8)
H150.10160.48990.16650.033*
O10.3501 (5)0.8986 (3)0.4961 (3)0.0440 (8)
Cl10.76953 (13)0.67976 (9)1.17307 (9)0.0352 (2)
Cl2−0.10057 (15)0.03386 (11)0.16691 (12)0.0460 (3)
Br10.31668 (5)0.71253 (4)0.23765 (4)0.03793 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0331 (19)0.0179 (17)0.0270 (17)−0.0089 (15)0.0120 (15)−0.0038 (14)
C20.0268 (18)0.0234 (18)0.0321 (19)0.0006 (15)0.0130 (15)−0.0016 (15)
C30.0265 (15)0.0222 (16)0.0272 (14)−0.0041 (17)0.0138 (12)−0.0040 (17)
C40.0303 (19)0.0246 (18)0.037 (2)−0.0052 (16)0.0185 (16)−0.0088 (16)
C50.0298 (19)0.0202 (18)0.040 (2)−0.0016 (15)0.0142 (17)−0.0070 (16)
C60.0219 (16)0.023 (2)0.0308 (17)−0.0049 (13)0.0095 (13)0.0000 (14)
C70.0249 (18)0.0258 (19)0.0325 (19)−0.0014 (15)0.0094 (15)0.0036 (16)
C80.0251 (17)0.031 (2)0.0248 (17)−0.0008 (14)0.0068 (14)0.0095 (14)
C90.0223 (17)0.0268 (19)0.0232 (16)0.0026 (15)0.0028 (14)−0.0031 (15)
C100.0208 (16)0.0231 (18)0.0252 (17)−0.0012 (14)0.0049 (14)−0.0020 (14)
C110.038 (2)0.031 (2)0.0240 (17)−0.0122 (17)0.0122 (16)−0.0030 (16)
C120.041 (2)0.033 (2)0.0329 (17)−0.0120 (19)0.0179 (16)−0.0028 (18)
C130.0268 (17)0.034 (2)0.0318 (16)−0.0077 (16)0.0124 (14)−0.0120 (17)
C140.0270 (19)0.038 (2)0.0254 (18)0.0029 (16)0.0022 (15)−0.0114 (17)
C150.0248 (18)0.0290 (19)0.0282 (18)0.0011 (15)0.0077 (15)−0.0005 (16)
O10.075 (2)0.0152 (13)0.0357 (15)−0.0042 (14)0.0097 (15)0.0106 (12)
Cl10.0448 (5)0.0336 (6)0.0279 (4)−0.0016 (4)0.0131 (4)−0.0049 (4)
Cl20.0468 (6)0.0417 (6)0.0522 (6)−0.0183 (5)0.0199 (5)−0.0197 (5)
Br10.0425 (2)0.0432 (2)0.02831 (17)−0.0063 (2)0.01189 (14)0.01032 (19)

Geometric parameters (Å, °)

C1—C61.387 (5)C8—Br11.902 (3)
C1—C21.392 (5)C9—C101.462 (5)
C1—H10.9500C9—H90.9500
C2—C31.397 (5)C10—C111.391 (5)
C2—H20.9500C10—C151.402 (5)
C3—C41.378 (5)C11—C121.395 (5)
C3—Cl11.741 (3)C11—H110.9500
C4—C51.384 (5)C12—C131.391 (5)
C4—H40.9500C12—H120.9500
C5—C61.399 (5)C13—C141.382 (6)
C5—H50.9500C13—Cl21.742 (4)
C6—C71.510 (5)C14—C151.387 (6)
C7—O11.217 (5)C14—H140.9500
C7—C81.495 (5)C15—H150.9500
C8—C91.349 (5)
C6—C1—C2120.6 (3)C7—C8—Br1113.0 (2)
C6—C1—H1119.7C8—C9—C10134.7 (3)
C2—C1—H1119.7C8—C9—H9112.7
C1—C2—C3118.4 (3)C10—C9—H9112.7
C1—C2—H2120.8C11—C10—C15118.7 (3)
C3—C2—H2120.8C11—C10—C9115.2 (3)
C4—C3—C2121.8 (3)C15—C10—C9126.1 (3)
C4—C3—Cl1119.6 (3)C10—C11—C12121.6 (3)
C2—C3—Cl1118.5 (3)C10—C11—H11119.2
C3—C4—C5119.0 (3)C12—C11—H11119.2
C3—C4—H4120.5C13—C12—C11117.8 (4)
C5—C4—H4120.5C13—C12—H12121.1
C4—C5—C6120.6 (3)C11—C12—H12121.1
C4—C5—H5119.7C14—C13—C12122.1 (4)
C6—C5—H5119.7C14—C13—Cl2119.5 (3)
C1—C6—C5119.5 (3)C12—C13—Cl2118.4 (3)
C1—C6—C7123.0 (3)C13—C14—C15119.1 (3)
C5—C6—C7117.3 (3)C13—C14—H14120.5
O1—C7—C8120.8 (3)C15—C14—H14120.5
O1—C7—C6121.0 (3)C14—C15—C10120.7 (4)
C8—C7—C6118.2 (3)C14—C15—H15119.7
C9—C8—C7122.4 (3)C10—C15—H15119.7
C9—C8—Br1124.4 (3)
C6—C1—C2—C3−0.6 (5)O1—C7—C8—Br131.2 (5)
C1—C2—C3—C41.4 (5)C6—C7—C8—Br1−151.1 (3)
C1—C2—C3—Cl1−176.1 (3)C7—C8—C9—C10174.4 (4)
C2—C3—C4—C5−1.3 (5)Br1—C8—C9—C10−1.5 (6)
Cl1—C3—C4—C5176.2 (3)C8—C9—C10—C11165.5 (4)
C3—C4—C5—C60.2 (5)C8—C9—C10—C15−15.5 (7)
C2—C1—C6—C5−0.4 (5)C15—C10—C11—C12−0.4 (6)
C2—C1—C6—C7174.1 (3)C9—C10—C11—C12178.7 (3)
C4—C5—C6—C10.6 (5)C10—C11—C12—C13−2.0 (6)
C4—C5—C6—C7−174.3 (3)C11—C12—C13—C142.5 (5)
C1—C6—C7—O1−149.5 (4)C11—C12—C13—Cl2−178.3 (3)
C5—C6—C7—O125.2 (5)C12—C13—C14—C15−0.5 (5)
C1—C6—C7—C832.8 (5)Cl2—C13—C14—C15−179.6 (3)
C5—C6—C7—C8−152.5 (3)C13—C14—C15—C10−2.1 (5)
O1—C7—C8—C9−145.1 (4)C11—C10—C15—C142.5 (5)
C6—C7—C8—C932.6 (5)C9—C10—C15—C14−176.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.952.473.411 (5)171
C11—H11···Cl1ii0.952.813.619 (4)143
C15—H15···Br10.952.693.377 (4)129

Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) −x+1, y−1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2111).

References

  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bruker (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Narayana, B. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4308–o4309.
  • Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1659–o1661.
  • Dhanasekaran, V., Gayathri, D., Velmurugan, D., Ravikumar, K. & Karthikeyan, M. S. (2007a). Acta Cryst. E63, o2060–o2061.
  • Dhanasekaran, V., Gayathri, D., Velmurugan, D., Ravikumar, K. & Karthikeyan, M. S. (2007b). Acta Cryst. E63, o2309–o2310.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fun, H.-K., Jebas, S. R., Patil, P. S., Karthikeyan, M. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1559. [PMC free article] [PubMed]
  • Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578–o1579.
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography