PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1272–m1273.
Published online 2009 October 3. doi:  10.1107/S1600536809039294
PMCID: PMC2971335

Poly[[aqua­(μ-4,4′-bipyridine-κ2 N:N′)(μ3-2-nitro-5-sulfonatobenzoato-κ3 O 1:O 1′:O 5)copper(II)] 4,4′-bipyridine hemisolvate]

Abstract

In the title compound, [Cu(C7H3NO7S)(C10H8N2)(H2O)]·0.5C10H8N2, the CuII atom is six-coordinated by two N atoms from two different bipyridine (bipy) ligands, one sulfonate O atom and two carboxyl­ate O atoms from three 2-nitro-5-sulfonatobenzoate ligands and one water O atom in a distorted octa­hedral geometry. The bipy solvent mol­ecule lies on an inversion center. The CuII atoms are linked by the bipy ligands, forming one-dimensional chains, which are connected by the 2-nitro-5-sulfonatobenzoate ligands into a two-dimensional layer-like network. The two-dimensional structure is extended by O—H(...)O and O—H(...)N hydrogen bonds into a three-dimensional supra­molecular network.

Related literature

For general background to copper(II) sulfonate complexes, see: Du et al. (2009 [triangle]); Li et al. (2009 [triangle]); Liu et al. (2009 [triangle]); Sonnauer & Stock (2008 [triangle]); Sonnauer et al. (2009 [triangle]). For related structures, see: Dong et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1272-scheme1.jpg

Experimental

Crystal data

  • [Cu(C7H3NO7S)(C10H8N2)(H2O)]·0.5C10H8N2
  • M r = 561.00
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1272-efi1.jpg
  • a = 11.4549 (17) Å
  • b = 11.0447 (16) Å
  • c = 17.089 (3) Å
  • β = 92.738 (3)°
  • V = 2159.5 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.17 mm−1
  • T = 293 K
  • 0.23 × 0.17 × 0.14 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.767, T max = 0.850
  • 11892 measured reflections
  • 4260 independent reflections
  • 2560 reflections with I > 2σ(I)
  • R int = 0.088

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.135
  • S = 1.00
  • 4260 reflections
  • 331 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.86 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809039294/hy2230sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039294/hy2230Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Baicheng Normal College is thanked for supporting this work.

supplementary crystallographic information

Comment

In recent years, the design and synthesis of copper(II) sulfonates have attracted great attention because of their flexible coordination modes, interesting inorganic-organic lamellar structures, selective and reversible guest inclusion properties, and their ability to intercalate guest molecules (Du et al., 2009; Sonnauer et al., 2009). It is noteworthy that some copper(II) sulfonate complexes with nitrogen-based secondary ligands, exhibiting different bonding modes dependent on the presence of secondary ligands, have been reported (Liu et al., 2009; Sonnauer & Stock, 2008). It has also been demonstrated that the existence and changes of the secondary ligands can have a great effect on the structures of copper(II) sulfonates, often with surprising results (Li et al., 2009). In this paper, we utilized 2-nitro-5-sulfobenzoic acid (H2nsb) as an organic sulfonate ligand and 4,4'-bipyridine (bipy) as an N-donor ligand, providing a coordination compound, [Cu(nsb)(bipy)(H2O)].0.5bipy, which is reported here.

In the title compound, the central CuII ion is six-coordinated by two N atoms from two different bipy ligands, one sulfonate O atom, two carboxylate O atoms from three nsb ligand and one water molecule in a distorted octahedral coordination geometry (Table 1). There are free bipy molecules in the structure, stabilized by hydrogen bonds (Fig. 1). The Cu—O distances are comparable to those found in other crystallographically characterized CuII complexes (Dong et al., 2009). The Cu atoms are linked by the bipy ligands, forming an extended one-dimensional chain. These chains are further connected by the nsb ligands into a two-dimensional layer-like network. In addition, the existence of O—H···O and O—H···N hydrogen bonds (Table 2) extends the two-dimensional layer into a three-dimensional supramolecular architecture (Fig. 2).

Experimental

A mixture of Cu(CH3CO2)2.2H2O (0.040 g, 0.2 mmol), 2-nitro-5-sulfobenzoic acid (0.049 g, 0.2 mmol), 4,4'-bipyridine (0.039 g, 0.2 mmol), and H2O (15 ml) was sealed in a 25 ml Teflon-lined stainless steel reactor, which was heated at 443 K for 72 h and then it was cooled to room temperature. Blue crystals of the title compound were collected.

Refinement

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H= 0.93 Å and Uiso(H)= 1.2Ueq(C). The H atoms of the water molecule were located in a difference Fourier map and refined with a distance restraint of O—H = 0.85 (1) Å and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x, 1+y, z; (ii) 1-x, -0.5+y, 1.5-z; (iii) 1-x, 1-y, 1-z; (iv) -x, 1-y, 2-z.]
Fig. 2.
View of the three-dimensional supramolecular network in the title compound. Dashed lines denote hydrogen bonds.

Crystal data

[Cu(C7H3NO7S)(C10H8N2)(H2O)]·0.5C10H8N2F(000) = 1144
Mr = 561.00Dx = 1.725 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4260 reflections
a = 11.4549 (17) Åθ = 1.8–26.0°
b = 11.0447 (16) ŵ = 1.17 mm1
c = 17.089 (3) ÅT = 293 K
β = 92.738 (3)°Block, blue
V = 2159.5 (5) Å30.23 × 0.17 × 0.14 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer4260 independent reflections
Radiation source: fine-focus sealed tube2560 reflections with I > 2σ(I)
graphiteRint = 0.088
[var phi] and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −14→14
Tmin = 0.767, Tmax = 0.850k = −13→13
11892 measured reflectionsl = −21→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0455P)2] where P = (Fo2 + 2Fc2)/3
4260 reflections(Δ/σ)max = 0.001
331 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = −0.46 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2223 (4)0.7923 (4)0.6944 (3)0.0215 (13)
C20.2994 (4)0.7254 (4)0.6511 (3)0.0198 (12)
H20.35650.76560.62430.024*
C30.2929 (4)0.5989 (5)0.6472 (3)0.0195 (12)
C40.2051 (5)0.5449 (4)0.6866 (3)0.0224 (13)
C50.1244 (5)0.6090 (5)0.7293 (4)0.0321 (15)
H50.06490.56920.75420.039*
C60.1356 (5)0.7338 (5)0.7335 (4)0.0313 (15)
H60.08460.77860.76270.038*
C70.3842 (5)0.5338 (4)0.6006 (3)0.0177 (12)
C80.5609 (4)0.2511 (4)0.6504 (3)0.0229 (13)
H80.51290.29360.68310.027*
C90.5560 (4)0.1262 (4)0.6501 (3)0.0237 (13)
H90.50670.08600.68310.028*
C100.6248 (5)0.0607 (4)0.6005 (3)0.0183 (13)
C110.6982 (4)0.1266 (4)0.5532 (3)0.0205 (13)
H110.74540.08690.51860.025*
C120.6997 (4)0.2501 (4)0.5582 (3)0.0208 (13)
H120.75040.29240.52730.025*
C130.6233 (4)−0.0732 (4)0.5994 (3)0.0191 (13)
C140.6096 (4)−0.1390 (4)0.6673 (3)0.0207 (13)
H140.5960−0.09920.71400.025*
C150.6162 (5)−0.2632 (4)0.6656 (3)0.0241 (13)
H150.6098−0.30570.71220.029*
C160.6431 (5)−0.2628 (4)0.5338 (3)0.0248 (13)
H160.6541−0.30540.48780.030*
C170.6397 (5)−0.1375 (4)0.5304 (3)0.0236 (13)
H170.6482−0.09710.48330.028*
C180.0395 (6)0.2255 (6)1.0226 (4)0.052 (2)
H180.03160.16411.05930.063*
C190.0134 (6)0.3431 (6)1.0445 (4)0.0483 (19)
H19−0.00570.35971.09570.058*
C200.0160 (5)0.4360 (5)0.9900 (4)0.0353 (16)
C210.0488 (5)0.4042 (6)0.9165 (4)0.0408 (17)
H210.05090.46290.87760.049*
C220.0790 (5)0.2855 (6)0.8995 (4)0.0421 (17)
H220.10280.26770.84950.051*
N10.1916 (4)0.4121 (4)0.6833 (3)0.0327 (13)
N20.6323 (4)0.3136 (3)0.6052 (3)0.0212 (11)
N30.6313 (4)−0.3253 (4)0.5997 (3)0.0194 (10)
N40.0754 (4)0.1954 (5)0.9520 (3)0.0406 (14)
O10.1331 (3)0.9957 (3)0.7351 (2)0.0321 (9)
O20.3416 (3)0.9755 (3)0.7461 (2)0.0283 (10)
O30.2451 (4)0.9910 (3)0.6178 (2)0.0373 (10)
O40.4740 (3)0.5046 (3)0.6409 (2)0.0223 (8)
O50.3643 (3)0.5231 (3)0.5297 (2)0.0277 (9)
O60.8116 (3)0.4917 (4)0.6061 (2)0.0259 (9)
O70.2618 (3)0.3519 (3)0.6486 (3)0.0376 (11)
O80.1112 (4)0.3662 (4)0.7165 (3)0.0676 (17)
S10.23675 (13)0.95326 (12)0.69752 (9)0.0243 (4)
Cu10.63413 (5)0.49342 (5)0.60435 (4)0.0195 (2)
H1A0.833 (5)0.486 (5)0.653 (3)0.029*
H1B0.843 (5)0.543 (5)0.576 (3)0.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.025 (3)0.019 (3)0.021 (3)0.002 (2)−0.001 (3)−0.003 (3)
C20.024 (3)0.018 (3)0.019 (3)−0.002 (2)0.004 (2)0.001 (2)
C30.020 (3)0.018 (3)0.021 (3)0.003 (2)0.001 (3)−0.002 (3)
C40.027 (3)0.013 (3)0.027 (4)0.001 (2)0.005 (3)0.005 (2)
C50.027 (3)0.029 (3)0.042 (4)−0.001 (3)0.018 (3)0.007 (3)
C60.032 (3)0.026 (3)0.037 (4)0.009 (3)0.013 (3)0.001 (3)
C70.030 (3)0.007 (3)0.016 (3)−0.005 (2)0.006 (3)0.001 (2)
C80.029 (3)0.015 (3)0.027 (3)0.000 (2)0.014 (3)0.001 (3)
C90.030 (3)0.014 (3)0.028 (4)−0.004 (2)0.007 (3)0.002 (3)
C100.029 (3)0.005 (2)0.020 (3)0.002 (2)−0.007 (3)0.001 (2)
C110.028 (3)0.011 (3)0.024 (3)−0.001 (2)0.010 (3)−0.004 (2)
C120.026 (3)0.011 (3)0.027 (3)−0.001 (2)0.007 (3)0.004 (2)
C130.024 (3)0.009 (3)0.025 (4)0.000 (2)0.005 (3)−0.002 (3)
C140.030 (3)0.013 (3)0.021 (3)0.002 (2)0.010 (3)0.000 (2)
C150.032 (3)0.016 (3)0.025 (4)−0.001 (2)0.008 (3)0.005 (3)
C160.040 (3)0.014 (3)0.022 (3)0.003 (3)0.011 (3)−0.006 (3)
C170.035 (3)0.015 (3)0.021 (3)−0.001 (3)0.006 (3)0.006 (3)
C180.068 (5)0.043 (4)0.048 (5)0.014 (4)0.020 (4)0.011 (4)
C190.066 (5)0.034 (4)0.045 (5)0.019 (4)0.013 (4)−0.004 (4)
C200.030 (4)0.039 (4)0.038 (4)0.007 (3)0.004 (3)−0.004 (3)
C210.049 (4)0.037 (4)0.037 (4)0.010 (3)0.003 (4)0.000 (3)
C220.047 (4)0.043 (4)0.037 (4)0.007 (3)0.004 (3)−0.013 (4)
N10.033 (3)0.025 (3)0.041 (4)−0.006 (2)0.006 (3)0.001 (3)
N20.029 (3)0.011 (2)0.024 (3)0.002 (2)0.005 (2)−0.003 (2)
N30.022 (2)0.011 (2)0.026 (3)−0.0013 (19)0.005 (2)0.001 (2)
N40.038 (3)0.036 (3)0.048 (4)0.002 (2)0.000 (3)−0.003 (3)
O10.031 (2)0.026 (2)0.039 (2)0.0052 (19)0.0013 (19)−0.006 (2)
O20.029 (2)0.020 (2)0.036 (3)−0.0042 (16)0.0006 (19)−0.0048 (19)
O30.065 (3)0.023 (2)0.025 (2)0.002 (2)0.002 (2)0.001 (2)
O40.0249 (19)0.0142 (18)0.028 (2)0.0021 (17)0.0053 (17)0.0024 (19)
O50.045 (2)0.017 (2)0.021 (2)0.0056 (17)0.0079 (19)−0.0030 (18)
O60.030 (2)0.021 (2)0.027 (2)−0.0013 (18)0.0064 (19)0.006 (2)
O70.046 (3)0.019 (2)0.049 (3)−0.005 (2)0.019 (2)−0.007 (2)
O80.066 (3)0.035 (3)0.106 (5)−0.012 (2)0.056 (3)0.005 (3)
S10.0298 (8)0.0166 (7)0.0269 (9)0.0041 (6)0.0063 (7)−0.0020 (6)
Cu10.0252 (3)0.0066 (3)0.0273 (4)0.0008 (3)0.0082 (3)−0.0005 (3)

Geometric parameters (Å, °)

C1—C61.382 (7)C15—H150.9300
C1—C21.391 (7)C16—N31.334 (6)
C1—S11.787 (5)C16—C171.385 (7)
C2—C31.401 (6)C16—H160.9300
C2—H20.9300C17—H170.9300
C3—C41.373 (7)C18—N41.335 (8)
C3—C71.525 (7)C18—C191.389 (9)
C4—C51.398 (7)C18—H180.9300
C4—N11.475 (7)C19—C201.386 (9)
C5—C61.386 (7)C19—H190.9300
C5—H50.9300C20—C211.375 (8)
C6—H60.9300C20—C20i1.505 (11)
C7—O51.227 (6)C21—C221.390 (8)
C7—O41.254 (6)C21—H210.9300
C8—N21.341 (6)C22—N41.342 (8)
C8—C91.381 (7)C22—H220.9300
C8—H80.9300N1—O81.216 (6)
C9—C101.388 (7)N1—O71.219 (6)
C9—H90.9300O1—S11.454 (4)
C10—C111.398 (7)O2—S11.448 (4)
C10—C131.479 (6)O3—S11.432 (4)
C11—C121.366 (6)O6—H1A0.83 (5)
C11—H110.9300O6—H1B0.86 (5)
C12—N21.339 (6)Cu1—N21.986 (4)
C12—H120.9300Cu1—N3ii2.004 (4)
C13—C141.384 (7)Cu1—O2iii2.565 (4)
C13—C171.397 (7)Cu1—O41.969 (3)
C14—C151.374 (6)Cu1—O5iv2.299 (4)
C14—H140.9300Cu1—O62.032 (4)
C15—N31.337 (6)
C6—C1—C2119.9 (5)N4—C18—C19123.8 (7)
C6—C1—S1121.2 (4)N4—C18—H18118.1
C2—C1—S1118.9 (4)C19—C18—H18118.1
C1—C2—C3121.4 (5)C20—C19—C18119.9 (7)
C1—C2—H2119.3C20—C19—H19120.0
C3—C2—H2119.3C18—C19—H19120.0
C4—C3—C2116.7 (5)C21—C20—C19116.2 (6)
C4—C3—C7126.0 (5)C21—C20—C20i121.8 (8)
C2—C3—C7117.3 (5)C19—C20—C20i122.0 (8)
C3—C4—C5123.6 (5)C20—C21—C22120.9 (6)
C3—C4—N1119.4 (5)C20—C21—H21119.5
C5—C4—N1116.9 (5)C22—C21—H21119.5
C6—C5—C4117.9 (5)N4—C22—C21122.9 (6)
C6—C5—H5121.0N4—C22—H22118.6
C4—C5—H5121.0C21—C22—H22118.6
C1—C6—C5120.5 (5)O8—N1—O7122.2 (5)
C1—C6—H6119.8O8—N1—C4118.4 (5)
C5—C6—H6119.8O7—N1—C4119.4 (5)
O5—C7—O4128.8 (5)C12—N2—C8117.4 (4)
O5—C7—C3117.5 (5)C12—N2—Cu1120.8 (4)
O4—C7—C3113.6 (5)C8—N2—Cu1121.7 (4)
N2—C8—C9122.5 (5)C16—N3—C15117.9 (4)
N2—C8—H8118.7C16—N3—Cu1v123.2 (4)
C9—C8—H8118.7C15—N3—Cu1v118.8 (4)
C8—C9—C10119.9 (5)C18—N4—C22116.2 (6)
C8—C9—H9120.0C7—O4—Cu1126.4 (3)
C10—C9—H9120.0C7—O5—Cu1iv168.9 (4)
C9—C10—C11117.2 (4)Cu1—O6—H1A105 (4)
C9—C10—C13121.5 (5)Cu1—O6—H1B115 (4)
C11—C10—C13121.4 (5)H1A—O6—H1B122 (5)
C12—C11—C10119.3 (5)O3—S1—O2113.9 (2)
C12—C11—H11120.4O3—S1—O1114.8 (2)
C10—C11—H11120.4O2—S1—O1111.4 (2)
N2—C12—C11123.7 (5)O3—S1—C1105.8 (3)
N2—C12—H12118.1O2—S1—C1105.0 (2)
C11—C12—H12118.1O1—S1—C1104.9 (2)
C14—C13—C17117.7 (5)O4—Cu1—N292.84 (16)
C14—C13—C10121.1 (5)O4—Cu1—N3ii86.36 (16)
C17—C13—C10121.1 (5)N2—Cu1—N3ii177.66 (18)
C15—C14—C13119.9 (5)O4—Cu1—O6160.42 (16)
C15—C14—H14120.1N2—Cu1—O690.09 (17)
C13—C14—H14120.1N3ii—Cu1—O691.39 (17)
N3—C15—C14122.6 (5)O4—Cu1—O5iv111.89 (14)
N3—C15—H15118.7N2—Cu1—O5iv85.92 (16)
C14—C15—H15118.7N3ii—Cu1—O5iv92.34 (16)
N3—C16—C17123.2 (5)O6—Cu1—O5iv87.62 (15)
N3—C16—H16118.4O2iii—Cu1—N285.20 (17)
C17—C16—H16118.4O2iii—Cu1—N3ii96.74 (17)
C16—C17—C13118.5 (5)O2iii—Cu1—O475.35 (13)
C16—C17—H17120.7O2iii—Cu1—O5iv168.81 (12)
C13—C17—H17120.7O2iii—Cu1—O685.63 (13)
C6—C1—C2—C3−1.2 (8)C20i—C20—C21—C22179.5 (7)
S1—C1—C2—C3179.4 (4)C20—C21—C22—N41.7 (10)
C1—C2—C3—C41.4 (8)C3—C4—N1—O8−177.7 (6)
C1—C2—C3—C7−177.9 (5)C5—C4—N1—O80.9 (8)
C2—C3—C4—C50.1 (9)C3—C4—N1—O73.5 (8)
C7—C3—C4—C5179.2 (5)C5—C4—N1—O7−178.0 (5)
C2—C3—C4—N1178.5 (5)C11—C12—N2—C81.0 (8)
C7—C3—C4—N1−2.3 (9)C11—C12—N2—Cu1−176.6 (4)
C3—C4—C5—C6−1.7 (9)C9—C8—N2—C120.5 (8)
N1—C4—C5—C6179.8 (5)C9—C8—N2—Cu1178.1 (4)
C2—C1—C6—C5−0.5 (9)C17—C16—N3—C15−0.4 (8)
S1—C1—C6—C5178.9 (5)C17—C16—N3—Cu1v179.2 (4)
C4—C5—C6—C11.9 (9)C14—C15—N3—C161.6 (8)
C4—C3—C7—O595.3 (7)C14—C15—N3—Cu1v−178.0 (4)
C2—C3—C7—O5−85.6 (6)C19—C18—N4—C22−3.8 (10)
C4—C3—C7—O4−88.7 (7)C21—C22—N4—C180.7 (9)
C2—C3—C7—O490.4 (6)O5—C7—O4—Cu126.7 (7)
N2—C8—C9—C10−1.5 (9)C3—C7—O4—Cu1−148.7 (3)
C8—C9—C10—C110.9 (8)O4—C7—O5—Cu1iv−29 (2)
C8—C9—C10—C13179.0 (5)C3—C7—O5—Cu1iv146.5 (15)
C9—C10—C11—C120.6 (8)C6—C1—S1—O3−130.7 (5)
C13—C10—C11—C12−177.6 (5)C2—C1—S1—O348.7 (5)
C10—C11—C12—N2−1.6 (8)C6—C1—S1—O2108.6 (5)
C9—C10—C13—C14−35.0 (8)C2—C1—S1—O2−72.0 (5)
C11—C10—C13—C14143.0 (5)C6—C1—S1—O1−9.0 (5)
C9—C10—C13—C17147.2 (5)C2—C1—S1—O1170.5 (4)
C11—C10—C13—C17−34.7 (8)C7—O4—Cu1—N2−106.1 (4)
C17—C13—C14—C152.0 (8)C7—O4—Cu1—N3ii71.7 (4)
C10—C13—C14—C15−175.8 (5)C7—O4—Cu1—O6155.6 (5)
C13—C14—C15—N3−2.5 (8)C7—O4—Cu1—O5iv−19.4 (4)
N3—C16—C17—C130.1 (8)C12—N2—Cu1—O4153.9 (4)
C14—C13—C17—C16−0.9 (8)C8—N2—Cu1—O4−23.6 (4)
C10—C13—C17—C16176.9 (5)C12—N2—Cu1—O6−45.4 (4)
N4—C18—C19—C204.6 (11)C8—N2—Cu1—O6137.1 (4)
C18—C19—C20—C21−2.0 (10)C12—N2—Cu1—O5iv42.2 (4)
C18—C19—C20—C20i177.6 (7)C8—N2—Cu1—O5iv−135.3 (4)
C19—C20—C21—C22−0.9 (10)

Symmetry codes: (i) −x, −y+1, −z+2; (ii) x, y+1, z; (iii) −x+1, y−1/2, −z+3/2; (iv) −x+1, −y+1, −z+1; (v) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O6—H1A···O1iii0.83 (5)1.94 (5)2.758 (5)171 (6)
O6—H1B···N4vi0.86 (5)2.00 (5)2.801 (6)156 (5)

Symmetry codes: (iii) −x+1, y−1/2, −z+3/2; (vi) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2230).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dong, H., Bi, W. & Zhu, H. (2009). Asian J. Chem.21, 5598–5602.
  • Du, Z., Huang, J., Xie, Y. & Wen, H. (2009). J. Mol. Struct.919, 112–116.
  • Li, L., Xu, G. & Zhu, H.-B. (2009). Acta Cryst. E65, m476. [PMC free article] [PubMed]
  • Liu, Y., Bi, Y., He, W., Wang, X., Liao, W. & Zhang, H. (2009). J. Mol. Struct.919, 235–238.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sonnauer, A., Feyand, M. & Stock, N. (2009). Cryst. Growth Des.9, 586–592.
  • Sonnauer, A. & Stock, N. (2008). Eur. J. Inorg. Chem. pp. 5038–5045.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography