PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2894.
Published online 2009 October 28. doi:  10.1107/S160053680904392X
PMCID: PMC2971328

(5Z,7Z)-6,8-Dimethyl-9H-tetra­zolo[1,5-b][1,2,4]triazepine

Abstract

The mol­ecule of the title compound, C6H8N6, is approximately planar, with a maximum deviation from planarity of 0.099 (1) Å. In the crystal, mol­ecules are linked to each other via pairs of N—H(...)N hydrogen bonding, forming inversion dimers. The crystal structure is further stabilized by π–π stacking inter­actions, with a centroid–centroid distance of 3.419 (1) Å.

Related literature

For the preparation of the title compound, see: Gaponnik & Karavai (1984 [triangle]). For applications of fused tetra­zole ring compounds, see: Taha 2007 [triangle]; Zbigniew et al. (2007 [triangle]); Galvez-Ruiz et al. (2005 [triangle]); Klapötke & Sabaté (2008 [triangle]). For related structures, see: Taha (2005 [triangle]); He et al. (2009a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2894-scheme1.jpg

Experimental

Crystal data

  • C6H8N6
  • M r = 164.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2894-efi1.jpg
  • a = 3.9184 (8) Å
  • b = 13.584 (3) Å
  • c = 13.767 (3) Å
  • β = 96.274 (3)°
  • V = 728.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 93 K
  • 0.47 × 0.33 × 0.13 mm

Data collection

  • Rigaku Saturn 724+ diffractometer
  • Absorption correction: none
  • 5029 measured reflections
  • 1647 independent reflections
  • 1445 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.082
  • S = 1.00
  • 1647 reflections
  • 119 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CrystalClear (Rigaku, 2008 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680904392X/wn2354sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904392X/wn2354Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the State Key Laboratory of Explosion Science and Technology of the Beijing Institute of Technology, China (No. ZDKT08–01).

supplementary crystallographic information

Comment

Compounds based on the tetrazole ring have generated much interest (Taha 2005). On the one hand, fused tetrazole derivatives play an important role in many biological activities (Taha 2007; Zbigniew et al.,2007); on the other hand, nitrogen-rich compounds, in particular those containing the tetrazole ring, have great potential for energetic applications (Klapötke & Sabaté 2008); Galvez-Ruiz et al.2005). The title compound was first prepared by Gaponnik & Karavai (1984), but its crystal structure has hitherto not been reported. Here, we present the crystal structure of the title compound.

The molecular structure is shown in Fig.1. The molecule of the title compound assumes an approximately planar structure. The maximum deviation from planarity is 0.099 (1) Å for atom C3. Bond distances and angles are similar to the corresponding distances and angles reported for related compounds (He et al.2009a; He et al.2009b).

In the crystal structure, molecules are linked to each other via N—H···N hydrogen bonding (Table 1), forming a dimer structure. Intermolecular π-π interactions with a centroid···centroid distance of 3.419 (1) Å (Table 2), further help to stabilize the crystal structure. The crystal packing of the title compound is shown in Fig. 2, viewed down the a axis.

Experimental

The title compound was obtained according to the literature method (Gaponnik & Karavai, 1984). The purity of the compound was checked by determining its melting point, 477–479 K. Single crystals suitable for X-ray crystal structure determination were obtained by slow evaporation of an acetone solution at room temperature over two days.

Refinement

The H atom directly attached to the triazepine ring and that bonded to N were located in difference Fourier maps and refined freely. Methyl H atoms were placed in calculated positions, with C—H = 0.98 Å and refined as riding; Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radius.
Fig. 2.
The packing of the title compound, viewed along the a-axis, showing the formation of dimers via N—H···N hydrogen bonds (dashed lines).

Crystal data

C6H8N6F(000) = 344
Mr = 164.18Dx = 1.497 Mg m3
Monoclinic, P21/cMelting point: 477 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 3.9184 (8) ÅCell parameters from 2263 reflections
b = 13.584 (3) Åθ = 3.3–27.5°
c = 13.767 (3) ŵ = 0.11 mm1
β = 96.274 (3)°T = 93 K
V = 728.4 (3) Å3Chunk, red
Z = 40.47 × 0.33 × 0.13 mm

Data collection

Rigaku Saturn 724+ diffractometer1445 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.019
graphiteθmax = 27.5°, θmin = 3.3°
Detector resolution: 28.5714 pixels mm-1h = −4→5
multi–scank = −17→17
5029 measured reflectionsl = −11→17
1647 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.031P)2 + 0.36P] where P = (Fo2 + 2Fc2)/3
1647 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.4467 (3)0.24707 (7)0.45448 (7)0.0165 (2)
N20.5870 (3)0.24983 (8)0.36816 (7)0.0208 (2)
N30.6547 (3)0.16030 (8)0.34635 (8)0.0223 (3)
N40.5650 (3)0.09674 (8)0.41698 (7)0.0195 (2)
N50.3238 (3)0.11503 (8)0.56546 (8)0.0207 (3)
N60.3868 (3)0.34046 (7)0.49433 (7)0.0176 (2)
C10.4389 (3)0.15238 (9)0.48318 (8)0.0163 (3)
C20.1660 (3)0.16746 (9)0.63408 (8)0.0165 (3)
C30.1175 (3)0.26544 (9)0.63462 (9)0.0180 (3)
C40.2395 (3)0.34313 (9)0.57359 (9)0.0165 (3)
C50.0598 (3)0.10241 (9)0.71313 (9)0.0202 (3)
H5A0.25950.08190.75480.024*
H5B−0.05690.04560.68440.024*
H5C−0.09140.13800.75090.024*
C60.1945 (3)0.44529 (9)0.61191 (9)0.0206 (3)
H6A0.29200.49200.57050.025*
H6B0.30840.45030.67710.025*
H6C−0.04570.45880.61260.025*
H30.006 (4)0.2905 (11)0.6876 (11)0.025 (4)*
H5N0.342 (4)0.0478 (14)0.5724 (12)0.036 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0214 (5)0.0138 (5)0.0148 (5)0.0006 (4)0.0043 (4)0.0002 (4)
N20.0285 (6)0.0182 (5)0.0167 (5)0.0010 (4)0.0074 (4)0.0004 (4)
N30.0309 (6)0.0180 (5)0.0191 (5)0.0013 (5)0.0078 (4)0.0014 (4)
N40.0261 (6)0.0167 (5)0.0166 (5)0.0007 (4)0.0062 (4)0.0005 (4)
N50.0315 (6)0.0130 (5)0.0193 (5)0.0016 (4)0.0106 (5)0.0019 (4)
N60.0230 (5)0.0110 (5)0.0189 (5)0.0009 (4)0.0030 (4)−0.0018 (4)
C10.0177 (6)0.0151 (6)0.0161 (6)0.0000 (5)0.0013 (4)0.0005 (4)
C20.0174 (6)0.0168 (6)0.0153 (5)−0.0009 (5)0.0021 (4)−0.0007 (4)
C30.0196 (6)0.0181 (6)0.0168 (6)0.0000 (5)0.0050 (5)−0.0007 (5)
C40.0163 (6)0.0147 (6)0.0181 (6)0.0004 (4)−0.0002 (5)−0.0002 (4)
C50.0240 (6)0.0174 (6)0.0202 (6)−0.0003 (5)0.0072 (5)0.0024 (5)
C60.0246 (6)0.0155 (6)0.0224 (6)0.0011 (5)0.0055 (5)−0.0020 (5)

Geometric parameters (Å, °)

N1—C11.3469 (15)C2—C31.3446 (17)
N1—N21.3635 (14)C2—C51.4958 (16)
N1—N61.4119 (14)C3—C41.4615 (17)
N2—N31.2874 (15)C3—H30.953 (15)
N3—N41.3745 (14)C4—C61.5018 (16)
N4—C11.3207 (15)C5—H5A0.9600
N5—C11.3623 (15)C5—H5B0.9600
N5—C21.3820 (15)C5—H5C0.9600
N5—H5N0.920 (18)C6—H6A0.9600
N6—C41.2897 (16)C6—H6B0.9600
C1—N1—N2107.83 (10)C2—C3—H3115.8 (9)
C1—N1—N6137.23 (10)C4—C3—H3112.8 (9)
N2—N1—N6114.45 (9)N6—C4—C3132.13 (11)
N3—N2—N1106.88 (10)N6—C4—C6113.82 (10)
N2—N3—N4110.69 (10)C3—C4—C6114.02 (11)
C1—N4—N3105.82 (10)C2—C5—H5A109.5
C1—N5—C2126.17 (11)C2—C5—H5B109.5
C1—N5—H5N115.3 (10)H5A—C5—H5B109.5
C2—N5—H5N118.4 (10)C2—C5—H5C109.5
C4—N6—N1117.58 (10)H5A—C5—H5C109.5
N4—C1—N1108.78 (10)H5B—C5—H5C109.5
N4—C1—N5122.92 (11)C4—C6—H6A109.5
N1—C1—N5128.29 (11)C4—C6—H6B109.5
C3—C2—N5126.01 (11)H6A—C6—H6B109.5
C3—C2—C5122.01 (11)C4—C6—H6C109.5
N5—C2—C5111.95 (11)H6A—C6—H6C109.5
C2—C3—C4131.03 (12)H6B—C6—H6C109.5
C1—N1—N2—N30.80 (13)N6—N1—C1—N58.2 (2)
N6—N1—N2—N3174.17 (10)C2—N5—C1—N4−174.90 (12)
N1—N2—N3—N4−0.47 (14)C2—N5—C1—N15.0 (2)
N2—N3—N4—C1−0.04 (14)C1—N5—C2—C3−4.3 (2)
C1—N1—N6—C4−12.5 (2)C1—N5—C2—C5177.67 (12)
N2—N1—N6—C4176.81 (10)N5—C2—C3—C4−7.1 (2)
N3—N4—C1—N10.55 (13)C5—C2—C3—C4170.75 (12)
N3—N4—C1—N5−179.54 (11)N1—N6—C4—C30.64 (19)
N2—N1—C1—N4−0.84 (14)N1—N6—C4—C6178.52 (10)
N6—N1—C1—N4−171.93 (13)C2—C3—C4—N610.9 (2)
N2—N1—C1—N5179.24 (12)C2—C3—C4—C6−167.02 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N5—H5N···N4i0.920 (19)1.999 (19)2.9156 (17)173.5 (15)

Symmetry codes: (i) −x+1, −y, −z+1.

Table 2 π-π Stacking interactions(Å, °)

CgiCgjCgi···CgjαCgi_perpCgj_perp
Cg1Cg2i3.419 (1)2.833.3843.390

Symmetry code:(i)1+x, y, z; Cg1, Cg2 are the centroids of the five- and seven-membered rings, respectively. α is the dihedral angle between ring planes and Cgi_perp is the perpendicular distance of Cgi on ring j, Cgj_perp is the perpendicular distance of Cgj on ring i.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2354).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Galvez-Ruiz, J. C., Holl, G., Karaghiosoff, K., Klapötke, T. M., Lohnwitz, K., Mayer, P., Noth, H., Polborn, K., Rohbogner, C. J., Suter, M. & Weigand, J. J. (2005). Inorg. Chem.44, 4237–4253. [PubMed]
  • Gaponnik, P. N. & Karavai, V. P. (1984). Khim. Geterotsikl. Soedin.12, 1683–1686.
  • He, C.-L., Du, Z.-M., Tang, Z.-Q., Cong, X.-M. & Meng, L.-Q. (2009a). Acta Cryst. E65, o1760. [PMC free article] [PubMed]
  • He, C.-L., Du, Z.-M., Tang, Z.-Q., Cong, X.-M. & Meng, L.-Q. (2009b). Acta Cryst. E65, o1902. [PMC free article] [PubMed]
  • Klapötke, T. M. & Sabaté, C. M. (2008). Chem. Mater.20, 1750–1763.
  • Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Taha, M. A. M. (2005). J. Indian Chem. Soc.82, 172–174.
  • Taha, M. A. M. (2007). Monatsh. Chem 138, 505–509.
  • Zbigniew, K., Mariusz, M. & Andrzej, R. (2007). J. Mol. Struct.829, 22–28.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography