PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2750.
Published online 2009 October 17. doi:  10.1107/S1600536809041051
PMCID: PMC2971321

N-(3-Chloro­benzo­yl)benzene­sulfonamide

Abstract

In the crystal structure of the title compound, C13H10ClNO3S, the conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond. The dihedral angle between the two benzene rings is 87.5 (1)°. The crystal structure features inversion-related dimers linked by pairs of N—H(...)O(S) hydrogen bonds.

Related literature

For background literature and similar structures, see: Gowda et al. (2008 [triangle]); Gowda, Foro, Nirmala et al. (2009 [triangle]); Gowda, Foro, Suchetan et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2750-scheme1.jpg

Experimental

Crystal data

  • C13H10ClNO3S
  • M r = 295.73
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2750-efi1.jpg
  • a = 21.309 (2) Å
  • b = 6.0953 (7) Å
  • c = 20.367 (2) Å
  • β = 92.48 (1)°
  • V = 2642.9 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.45 mm−1
  • T = 299 K
  • 0.42 × 0.40 × 0.24 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.834, T max = 0.900
  • 5328 measured reflections
  • 2714 independent reflections
  • 1968 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.133
  • S = 0.92
  • 2714 reflections
  • 176 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809041051/pk2198sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041051/pk2198Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extension of his research fellowship.

supplementary crystallographic information

Comment

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts (colon, lung, breast, ovary and prostate) in nude mice. As part of a study of the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2008; Gowda, Foro, Nirmala et al., 2009; Gowda, Foro, Suchetan et al., 2009), in the present work, the structure of N-(3-chlorobenzoyl)benzenesulfonamide (I) has been determined (Fig.1). The conformation of the of the N—H bond in the C—SO2—NH—C(O) segment of the structure is anti to the C=O bond, similar to that observed in N-(benzoyl)benzenesulfonamide (II) (Gowda, Foro, Suchetan et al., 2009). Further, the C=O bond in the segment is anti to the meta-Cl in the benzoyl ring, while the conformation of the N—C bond in the C—SO2—NH—C(O) segment of the structure has "gauche" torsions with respect to the SO bonds. The molecule is twisted at the N atom with a dihedral angle of 89.9 (1)° between the sulfonyl benzene ring and the C—SO2—NH—C—O segment, compared to the value of 86.5 (1)° in (II). The dihedral angle between the two benzene rings is 87.5 (1)° in (I) and 80.3 (1)° in (II). The packing of molecules linked by pairs of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Experimental

The title compound was prepared by refluxing a mixture of 3-chlorobenzoic acid, benzene sulfonamide and phosphorous oxychloride for 5 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried solid was recrystallized to the constant melting point.

Prism-like colourless single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of its toluene solution at room temperature.

Refinement

The H atom of the NH group was located in a difference map and and later restrained to N—H = 0.84 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids (drawn at the 50% probability level).
Fig. 2.
Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C13H10ClNO3SF(000) = 1216
Mr = 295.73Dx = 1.486 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1936 reflections
a = 21.309 (2) Åθ = 2.7–28.0°
b = 6.0953 (7) ŵ = 0.45 mm1
c = 20.367 (2) ÅT = 299 K
β = 92.48 (1)°Prism, colourless
V = 2642.9 (5) Å30.42 × 0.40 × 0.24 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector2714 independent reflections
Radiation source: fine-focus sealed tube1968 reflections with I > 2σ(I)
graphiteRint = 0.015
Rotation method data acquisition using ω and [var phi] scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −26→16
Tmin = 0.834, Tmax = 0.900k = −7→6
5328 measured reflectionsl = −25→25

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max = 0.001
2714 reflectionsΔρmax = 0.18 e Å3
176 parametersΔρmin = −0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (7)

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.20143 (9)−0.0804 (3)0.65509 (10)0.0418 (5)
C20.19836 (10)0.0558 (4)0.70922 (10)0.0486 (5)
H20.21610.19520.70870.058*
C30.16863 (13)−0.0179 (4)0.76404 (12)0.0648 (7)
H30.16680.07200.80080.078*
C40.14182 (12)−0.2218 (5)0.76472 (13)0.0687 (7)
H40.1218−0.26970.80180.082*
C50.14450 (12)−0.3554 (4)0.71097 (15)0.0696 (7)
H50.1257−0.49290.71160.084*
C60.17497 (11)−0.2883 (3)0.65551 (12)0.0569 (6)
H60.1776−0.38080.61940.068*
C70.13356 (10)0.1419 (3)0.52483 (10)0.0483 (5)
C80.08621 (9)0.1089 (3)0.46936 (10)0.0486 (5)
C90.08589 (10)−0.0686 (4)0.42751 (10)0.0519 (5)
H90.1175−0.17370.43160.062*
C100.03867 (11)−0.0901 (4)0.37955 (10)0.0562 (6)
C11−0.00920 (12)0.0610 (5)0.37261 (13)0.0705 (7)
H11−0.04110.04400.34040.085*
C12−0.00860 (15)0.2364 (5)0.41439 (18)0.0949 (10)
H12−0.04040.34070.41020.114*
C130.03849 (13)0.2618 (4)0.46282 (15)0.0772 (8)
H130.03800.38190.49100.093*
N10.18539 (9)0.0071 (3)0.52611 (8)0.0498 (5)
H1N0.1947 (11)−0.082 (4)0.4968 (12)0.060*
O10.28316 (7)−0.1577 (3)0.56683 (8)0.0734 (6)
O20.26351 (8)0.2263 (3)0.59692 (7)0.0655 (5)
O30.12636 (8)0.2751 (3)0.56792 (8)0.0695 (5)
Cl10.03840 (4)−0.31286 (16)0.32733 (4)0.1016 (3)
S10.24035 (2)0.00980 (9)0.58590 (2)0.0490 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0370 (10)0.0454 (10)0.0420 (10)0.0088 (9)−0.0084 (8)−0.0040 (8)
C20.0523 (12)0.0503 (12)0.0429 (11)−0.0007 (9)−0.0009 (9)−0.0076 (9)
C30.0667 (16)0.0830 (18)0.0449 (12)0.0055 (13)0.0039 (11)−0.0048 (12)
C40.0602 (16)0.0855 (18)0.0602 (15)−0.0003 (13)0.0010 (12)0.0214 (14)
C50.0590 (15)0.0527 (14)0.096 (2)−0.0034 (11)−0.0082 (15)0.0199 (14)
C60.0538 (13)0.0464 (12)0.0690 (15)0.0067 (10)−0.0144 (11)−0.0094 (11)
C70.0480 (12)0.0527 (12)0.0437 (11)0.0083 (10)−0.0030 (9)−0.0027 (9)
C80.0418 (11)0.0587 (13)0.0447 (11)0.0093 (10)−0.0036 (9)−0.0001 (10)
C90.0435 (12)0.0708 (14)0.0408 (11)0.0110 (10)−0.0050 (9)−0.0031 (10)
C100.0480 (13)0.0786 (15)0.0416 (11)−0.0027 (12)−0.0042 (9)0.0001 (11)
C110.0496 (14)0.098 (2)0.0621 (15)0.0053 (14)−0.0201 (12)0.0098 (14)
C120.0680 (18)0.097 (2)0.117 (3)0.0362 (16)−0.0345 (18)−0.009 (2)
C130.0631 (16)0.0783 (17)0.0880 (18)0.0275 (14)−0.0211 (14)−0.0190 (15)
N10.0451 (10)0.0688 (12)0.0348 (9)0.0139 (8)−0.0067 (7)−0.0155 (8)
O10.0482 (9)0.1156 (15)0.0554 (10)0.0295 (9)−0.0097 (8)−0.0298 (10)
O20.0635 (10)0.0830 (11)0.0497 (9)−0.0240 (9)−0.0011 (8)−0.0036 (8)
O30.0721 (11)0.0670 (10)0.0680 (11)0.0201 (9)−0.0139 (9)−0.0271 (9)
Cl10.0912 (6)0.1320 (7)0.0789 (5)0.0054 (5)−0.0282 (4)−0.0466 (5)
S10.0378 (3)0.0713 (4)0.0374 (3)0.0049 (2)−0.0044 (2)−0.0125 (2)

Geometric parameters (Å, °)

C1—C21.384 (3)C8—C91.377 (3)
C1—C61.387 (3)C8—C131.382 (3)
C1—S11.754 (2)C9—C101.378 (3)
C2—C31.382 (3)C9—H90.9300
C2—H20.9300C10—C111.377 (4)
C3—C41.369 (3)C10—Cl11.725 (2)
C3—H30.9300C11—C121.366 (4)
C4—C51.367 (4)C11—H110.9300
C4—H40.9300C12—C131.385 (4)
C5—C61.389 (4)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—H60.9300N1—S11.6527 (18)
C7—O31.210 (2)N1—H1N0.84 (2)
C7—N11.376 (3)O1—S11.4340 (16)
C7—C81.495 (3)O2—S11.4232 (16)
C2—C1—C6120.7 (2)C8—C9—C10119.8 (2)
C2—C1—S1119.47 (17)C8—C9—H9120.1
C6—C1—S1119.85 (16)C10—C9—H9120.1
C3—C2—C1119.2 (2)C11—C10—C9121.6 (2)
C3—C2—H2120.4C11—C10—Cl1118.72 (19)
C1—C2—H2120.4C9—C10—Cl1119.64 (18)
C4—C3—C2120.6 (2)C12—C11—C10118.2 (2)
C4—C3—H3119.7C12—C11—H11120.9
C2—C3—H3119.7C10—C11—H11120.9
C5—C4—C3120.1 (2)C11—C12—C13121.2 (3)
C5—C4—H4120.0C11—C12—H12119.4
C3—C4—H4120.0C13—C12—H12119.4
C4—C5—C6120.9 (2)C8—C13—C12120.0 (3)
C4—C5—H5119.6C8—C13—H13120.0
C6—C5—H5119.6C12—C13—H13120.0
C1—C6—C5118.6 (2)C7—N1—S1123.41 (15)
C1—C6—H6120.7C7—N1—H1N126.0 (17)
C5—C6—H6120.7S1—N1—H1N110.5 (17)
O3—C7—N1120.9 (2)O2—S1—O1118.86 (11)
O3—C7—C8122.38 (19)O2—S1—N1110.81 (10)
N1—C7—C8116.66 (17)O1—S1—N1103.42 (9)
C9—C8—C13119.1 (2)O2—S1—C1109.68 (9)
C9—C8—C7123.94 (18)O1—S1—C1108.83 (11)
C13—C8—C7116.8 (2)N1—S1—C1104.13 (10)
C6—C1—C2—C30.1 (3)Cl1—C10—C11—C12179.8 (2)
S1—C1—C2—C3−178.81 (18)C10—C11—C12—C13−0.5 (5)
C1—C2—C3—C4−0.8 (4)C9—C8—C13—C12−0.5 (5)
C2—C3—C4—C50.3 (4)C7—C8—C13—C12−177.1 (3)
C3—C4—C5—C60.9 (4)C11—C12—C13—C80.4 (5)
C2—C1—C6—C51.0 (3)O3—C7—N1—S11.5 (3)
S1—C1—C6—C5179.95 (17)C8—C7—N1—S1−176.23 (15)
C4—C5—C6—C1−1.5 (3)C7—N1—S1—O2−52.6 (2)
O3—C7—C8—C9−165.9 (2)C7—N1—S1—O1178.97 (19)
N1—C7—C8—C911.8 (3)C7—N1—S1—C165.3 (2)
O3—C7—C8—C1310.6 (4)C2—C1—S1—O2−0.9 (2)
N1—C7—C8—C13−171.7 (2)C6—C1—S1—O2−179.87 (16)
C13—C8—C9—C100.7 (4)C2—C1—S1—O1130.64 (17)
C7—C8—C9—C10177.1 (2)C6—C1—S1—O1−48.30 (19)
C8—C9—C10—C11−0.8 (4)C2—C1—S1—N1−119.56 (17)
C8—C9—C10—Cl1−179.90 (18)C6—C1—S1—N161.49 (18)
C9—C10—C11—C120.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.12 (2)2.946 (2)171 (2)

Symmetry codes: (i) −x+1/2, −y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2198).

References

  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1825. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1219. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography