PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2841.
Published online 2009 October 23. doi:  10.1107/S1600536809042950
PMCID: PMC2971312

2,4-Dichloro­phenyl 4-bromo­benzene­sulfonate

Abstract

In the title mol­ecule, C12H7BrCl2O3S, the dihedral angle between the two benzene rings is 55.18 (5)°. The notable inter­molecular contacts include C—H(...)O and π–π inter­actions [centroid–centroid distances = 4.037 (1) and 3.349 (1) Å].

Related literature

For a detailed account of the mol­ecular and supra­molecular architectures of aromatic sulfonates, see Vembu et al. (2007 [triangle]). For a general background to aromatic sulfonates, see: Yachi et al. (1989 [triangle]): Spungin et al. (1992 [triangle]); Tharakan et al. (1992 [triangle]); Alford et al. (1991 [triangle]); Jiang et al. (1990 [triangle]); Narayanan & Krakow (1983 [triangle]). For the criteria to describe C—H(...)O inter­actions, see: Desiraju & Steiner, (1999 [triangle]) and for the classification of aromatic stacking inter­actions, see: Spek (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2841-scheme1.jpg

Experimental

Crystal data

  • C12H7BrCl2O3S
  • M r = 382.05
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2841-efi1.jpg
  • a = 7.2955 (10) Å
  • b = 8.3955 (11) Å
  • c = 11.1251 (15) Å
  • α = 95.737 (8)°
  • β = 98.645 (7)°
  • γ = 96.231 (8)°
  • V = 664.98 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.65 mm−1
  • T = 90 K
  • 0.17 × 0.10 × 0.07 mm

Data collection

  • Nonius KappaCCD diffractometer with Oxford Cryostream
  • Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski & Minor 1997 [triangle]) T min = 0.576, T max = 0.784
  • 18308 measured reflections
  • 4745 independent reflections
  • 4091 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.074
  • S = 1.05
  • 4745 reflections
  • 200 parameters
  • All H-atom parameters refined
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.76 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809042950/om2286sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042950/om2286Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

NV thanks the University Grants Commission (UGC), Government of India, for a minor research project grant [MRP-2219/06(UGC-SERO)].

supplementary crystallographic information

Comment

Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989) and in many other fields (Spungin et al., 1992; Tharakan et al.,1992; Alford et al., 1991; Jiang et al., 1990; Narayanan & Krakow, 1983). An X-ray study of the title compound was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues. The molecular structure is shown in Fig. 1.

The C4–S–O3–C7 torsion angle of 65.86 (14)° corresponds to +synclinal conformation; as expected the dihedral angle between the mean planes of the 2,4-dichlorophenyl and bromobenzene rings of 55.18 (5)° shows that the two rings are not coplanar. This is similar to the situation reported by us for other aromatic sulfonates (Vembu et al. 2007 and references cited therein).

The crystal structure exhibits weak intermolecular C—H···O interactions (Desiraju & Steiner, 1999) (Table 1). There are two face to face π···π aromatic stacking interactions. The coordinates of Cg1···Cg1 (-x, 1 - y, 1 - z) at 4.037Å are α = 0.00, β = 24.13, γ = 24.13, the two perpendicular distances involving the aromatic rings being 3.684 Å. The coordinates of Cg2···Cg2 (-1 - x, -y, 2 - z) at 3.751Å are α = 0.03, β = 26.79, γ = 26.79, the two perpendicular distances involving the aromatic rings being 3.349 Å. Cg1 is the centroid of the aromatic ring formed by the atoms C1, C2, C3, C4, C5 & C6, Cg2 is the centroid of the aromatic ring formed by the atoms C7, C8, C9, C10, C11 & C12. α is the dihedral angle between the planes of the two aromatic rings, β is the angle of the aromatic ring formed by the atoms C1—C6 through the aromatic ring formed by the atoms C7—C12, γ is the angle of the vector through the centroids of the planes of the two aromatic rings and normal to the plane of the aromatic ring formed by C7—C12 (Spek, 2009).

Experimental

4-Bromobenzenesulfonyl chloride (10 mmol), dissolved in acetone (10 ml), was added dropwise to 2,4-dichlorophenol (10 mmol) in aqueous NaOH (8 ml, 5%) with constant stirring. The precipitate (6.5 mmol, yield 65%) was filtered and recrystallized from aqueous ethanol.

Refinement

All H-atoms were located in difference maps and their positions and isotropic displacement parameters freely refined.

Figures

Fig. 1.
The asymmetric unit with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius.

Crystal data

C12H7BrCl2O3SZ = 2
Mr = 382.05F(000) = 376
Triclinic, P1Dx = 1.908 Mg m3
Hall symbol: -P 1Melting point: 398 K
a = 7.2955 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3955 (11) ÅCell parameters from 4109 reflections
c = 11.1251 (15) Åθ = 2.5–33.6°
α = 95.737 (8)°µ = 3.65 mm1
β = 98.645 (7)°T = 90 K
γ = 96.231 (8)°Prism, colorless
V = 664.98 (15) Å30.17 × 0.10 × 0.07 mm

Data collection

Nonius KappaCCD diffractometer with Oxford Cryostream4745 independent reflections
Radiation source: fine-focus sealed tube4091 reflections with I > 2σ(I)
graphiteRint = 0.025
ω scans with κ offsetsθmax = 33.5°, θmin = 2.9°
Absorption correction: multi-scan (HKLSCALEPACK; Otwinowski & Minor 1997)h = −10→11
Tmin = 0.576, Tmax = 0.784k = −12→12
18308 measured reflectionsl = −16→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.074All H-atom parameters refined
S = 1.05w = 1/[σ2(Fo2) + (0.0284P)2 + 0.6284P] where P = (Fo2 + 2Fc2)/3
4745 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = −0.76 e Å3

Special details

Geometry. All su's (except the su in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell su's are taken into account individually in the estimation of su's in distances, angles and torsion angles; correlations between su's in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell su's is used for estimating su's involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.64701 (3)0.17437 (2)0.428948 (18)0.01931 (6)
Cl10.02233 (6)0.03498 (5)0.69619 (4)0.01838 (9)
Cl20.36290 (6)−0.08990 (6)1.13426 (5)0.02035 (10)
S10.14495 (6)0.51012 (5)0.77797 (4)0.01350 (8)
O10.26445 (19)0.59769 (16)0.88237 (13)0.0180 (3)
O20.00437 (19)0.58520 (17)0.70897 (13)0.0193 (3)
O30.02261 (17)0.36107 (15)0.82191 (12)0.0136 (2)
C10.4977 (2)0.2748 (2)0.53130 (17)0.0139 (3)
C20.5760 (2)0.3301 (2)0.65200 (18)0.0161 (3)
C30.4664 (3)0.4019 (2)0.72856 (17)0.0154 (3)
C40.2818 (2)0.4176 (2)0.68176 (16)0.0129 (3)
C50.2045 (2)0.3631 (2)0.56058 (17)0.0150 (3)
C60.3137 (3)0.2911 (2)0.48443 (17)0.0159 (3)
C70.1140 (2)0.2578 (2)0.89617 (16)0.0125 (3)
C80.1862 (3)0.3101 (2)1.01796 (17)0.0157 (3)
C90.2658 (3)0.2032 (2)1.09162 (17)0.0169 (3)
C100.2681 (2)0.0454 (2)1.04188 (17)0.0148 (3)
C110.1949 (2)−0.0090 (2)0.92034 (17)0.0145 (3)
C120.1179 (2)0.0995 (2)0.84746 (16)0.0129 (3)
H20.702 (4)0.319 (3)0.682 (2)0.023 (6)*
H30.511 (4)0.442 (3)0.811 (2)0.021 (6)*
H50.075 (4)0.373 (3)0.533 (2)0.027 (7)*
H60.266 (3)0.253 (3)0.405 (2)0.020 (6)*
H80.177 (3)0.419 (3)1.050 (2)0.019 (6)*
H90.316 (4)0.241 (3)1.174 (3)0.025 (7)*
H110.201 (3)−0.113 (3)0.889 (2)0.014 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02086 (9)0.01838 (10)0.02144 (10)0.00506 (7)0.01007 (7)0.00289 (7)
Cl10.0235 (2)0.0159 (2)0.01452 (19)0.00065 (16)0.00259 (16)−0.00138 (15)
Cl20.01585 (19)0.0236 (2)0.0246 (2)0.00547 (16)0.00383 (16)0.01331 (18)
S10.01517 (18)0.01071 (18)0.01559 (19)0.00379 (14)0.00343 (15)0.00253 (14)
O10.0223 (6)0.0124 (6)0.0186 (6)0.0010 (5)0.0036 (5)−0.0010 (5)
O20.0210 (6)0.0179 (7)0.0223 (7)0.0101 (5)0.0054 (5)0.0071 (5)
O30.0125 (5)0.0132 (6)0.0159 (6)0.0027 (4)0.0023 (4)0.0044 (5)
C10.0160 (7)0.0112 (7)0.0168 (8)0.0032 (6)0.0072 (6)0.0034 (6)
C20.0134 (7)0.0167 (8)0.0192 (8)0.0030 (6)0.0024 (6)0.0054 (7)
C30.0146 (7)0.0158 (8)0.0150 (8)0.0010 (6)0.0002 (6)0.0024 (6)
C40.0139 (7)0.0104 (7)0.0151 (8)0.0026 (6)0.0035 (6)0.0021 (6)
C50.0136 (7)0.0158 (8)0.0151 (8)0.0022 (6)0.0002 (6)0.0024 (6)
C60.0167 (8)0.0167 (8)0.0138 (8)0.0010 (6)0.0013 (6)0.0029 (6)
C70.0123 (7)0.0120 (7)0.0146 (7)0.0025 (6)0.0043 (6)0.0035 (6)
C80.0185 (8)0.0141 (8)0.0145 (8)0.0021 (6)0.0031 (6)0.0008 (6)
C90.0166 (8)0.0188 (9)0.0148 (8)0.0004 (7)0.0017 (6)0.0028 (7)
C100.0110 (7)0.0163 (8)0.0191 (8)0.0032 (6)0.0038 (6)0.0088 (6)
C110.0136 (7)0.0124 (8)0.0192 (8)0.0033 (6)0.0053 (6)0.0040 (6)
C120.0123 (7)0.0137 (8)0.0128 (7)0.0010 (6)0.0035 (6)0.0005 (6)

Geometric parameters (Å, °)

Br1—C11.8909 (17)C4—C51.392 (2)
Cl1—C121.7306 (18)C5—C61.387 (3)
Cl2—C101.7361 (18)C5—H50.96 (3)
S1—O11.4267 (15)C6—H60.91 (3)
S1—O21.4279 (14)C7—C81.386 (2)
S1—O31.6163 (13)C7—C121.390 (2)
S1—C41.7520 (18)C8—C91.390 (3)
O3—C71.407 (2)C8—H80.96 (3)
C1—C21.390 (3)C9—C101.387 (3)
C1—C61.391 (3)C9—H90.94 (3)
C2—C31.391 (3)C10—C111.389 (3)
C2—H20.95 (3)C11—C121.387 (2)
C3—C41.394 (2)C11—H110.91 (2)
C3—H30.94 (3)
O1—S1—O2120.61 (9)C5—C6—C1119.11 (17)
O1—S1—O3108.71 (8)C5—C6—H6120.8 (16)
O2—S1—O3102.04 (8)C1—C6—H6120.0 (16)
O1—S1—C4109.04 (8)C8—C7—C12120.82 (16)
O2—S1—C4110.81 (9)C8—C7—O3120.41 (16)
O3—S1—C4104.20 (8)C12—C7—O3118.60 (16)
C7—O3—S1119.14 (11)C7—C8—C9119.49 (17)
C2—C1—C6121.93 (16)C7—C8—H8119.2 (15)
C2—C1—Br1118.56 (13)C9—C8—H8121.3 (15)
C6—C1—Br1119.51 (14)C10—C9—C8119.06 (17)
C1—C2—C3119.00 (16)C10—C9—H9122.2 (16)
C1—C2—H2120.7 (16)C8—C9—H9118.7 (17)
C3—C2—H2120.3 (16)C9—C10—C11122.05 (17)
C2—C3—C4119.06 (17)C9—C10—Cl2119.28 (15)
C2—C3—H3123.1 (16)C11—C10—Cl2118.66 (14)
C4—C3—H3117.8 (16)C12—C11—C10118.29 (17)
C5—C4—C3121.71 (16)C12—C11—H11121.4 (15)
C5—C4—S1119.34 (13)C10—C11—H11120.2 (15)
C3—C4—S1118.94 (14)C11—C12—C7120.28 (16)
C6—C5—C4119.18 (16)C11—C12—Cl1119.48 (14)
C6—C5—H5121.9 (17)C7—C12—Cl1120.22 (14)
C4—C5—H5118.9 (16)
O1—S1—O3—C7−50.31 (14)C2—C1—C6—C5−0.6 (3)
O2—S1—O3—C7−178.76 (13)Br1—C1—C6—C5179.19 (14)
C4—S1—O3—C765.86 (14)S1—O3—C7—C872.63 (19)
C6—C1—C2—C30.8 (3)S1—O3—C7—C12−112.06 (16)
Br1—C1—C2—C3−179.02 (14)C12—C7—C8—C90.9 (3)
C1—C2—C3—C4−0.5 (3)O3—C7—C8—C9176.11 (16)
C2—C3—C4—C50.0 (3)C7—C8—C9—C10−1.1 (3)
C2—C3—C4—S1−179.30 (14)C8—C9—C10—C110.6 (3)
O1—S1—C4—C5−162.54 (14)C8—C9—C10—Cl2−178.65 (14)
O2—S1—C4—C5−27.52 (17)C9—C10—C11—C120.2 (3)
O3—S1—C4—C581.53 (15)Cl2—C10—C11—C12179.41 (13)
O1—S1—C4—C316.82 (17)C10—C11—C12—C7−0.4 (3)
O2—S1—C4—C3151.84 (15)C10—C11—C12—Cl1−179.04 (13)
O3—S1—C4—C3−99.11 (15)C8—C7—C12—C11−0.1 (3)
C3—C4—C5—C60.1 (3)O3—C7—C12—C11−175.43 (15)
S1—C4—C5—C6179.47 (14)C8—C7—C12—Cl1178.50 (14)
C4—C5—C6—C10.2 (3)O3—C7—C12—Cl13.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O10.94 (3)2.51 (3)2.919 (2)106.2 (18)
C2—H2···O3i0.95 (3)2.58 (3)3.482 (2)160 (2)
C11—H11···O1ii0.91 (2)2.52 (2)3.390 (2)160 (2)

Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2286).

References

  • Alford, R. L., Honda, S., Lawrence, C. B. & Belmont, J. W. (1991). Virology, 183, 611–619. [PubMed]
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.
  • Jiang, F. N., Jiang, S., Liu, D., Richter, A. & Levy, J. G. (1990). J. Immunol. Methods, 134, 139–149. [PubMed]
  • Narayanan, C. S. & Krakow, J. S. (1983). Nucleic Acids Res.11, 2701–2716. [PMC free article] [PubMed]
  • Nonius, B. V. (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Spungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1992). FEBS Lett.311, 155–160. [PubMed]
  • Tharakan, J., Highsmith, F., Clark, D. & Drohsn, W. (1992). J. Chromatogr.595, 103–111. [PubMed]
  • Vembu, N., Sparkes, H. A. & Howard, J. A. K. (2007). Acta Cryst. E63, o3543.
  • Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). Biochim. Biophys. Acta, 978, 1–7. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography