PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2694.
Published online 2009 October 10. doi:  10.1107/S1600536809040677
PMCID: PMC2971311

3-Methyl-1,2,4-triazolo[3,4-a]phthalazine monohydrate

Abstract

In the crystal structure of the title compound, C10H8N4·H2O, the organic mol­ecules are approximately planar [maximum deviation from the least-squares plane = 0.041 (2) Å]. Two mol­ecules are connected by two water mol­ecules via O—H(...)N hydrogen bonding into dimers, which are located around centres of inversion. In the crystal, mol­ecules are stacked in the a-axis direction, with mean distances between the π systems of 3.43 (1) and 3.46 (1) Å [centroid–centroid distances are 3.604 (2) and 3.591 (2) Å].

Related literature

For general background to phthalazines, see: Cheng et al. (1999 [triangle]); Coates (1999 [triangle]); De Stevens (1981 [triangle]); Shubin et al. (2004 [triangle]); Tarzia et al. (1989 [triangle]); Yatani et al. (2001 [triangle]). For related structures, see: Boulanger et al. (1991 [triangle]); Burton-Pye et al. (2005 [triangle]); Zimmer et al. (1995 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2694-scheme1.jpg

Experimental

Crystal data

  • C10H8N4·H2O
  • M r = 202.22
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2694-efi1.jpg
  • a = 7.3009 (9) Å
  • b = 7.9253 (9) Å
  • c = 9.2755 (10) Å
  • α = 109.663 (10)°
  • β = 104.91 (1)°
  • γ = 95.830 (9)°
  • V = 477.83 (10) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 0.80 mm−1
  • T = 295 K
  • 0.4 × 0.2 × 0.1 mm

Data collection

  • Oxford Diffraction SuperNova (single source at offset) Atlas diffractometer
  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009 [triangle]) T min = 0.831, T max = 0.932
  • 2893 measured reflections
  • 1772 independent reflections
  • 1615 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.147
  • S = 1.12
  • 1772 reflections
  • 164 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Siemens, 1989 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809040677/nc2160sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040677/nc2160Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

CSC thanks the University of Mysore for research facilities.

supplementary crystallographic information

Comment

The practical interest upon phthalazine derivatives is based on their widespread applications (Coates, 1999). They are commonly used as ligands in transition metal catalysis (e.g., Yatani et al., 2001), as chemiluminescent materials (Shubin et al., 2004) and for optical applications (Cheng et al., 1999). The chemistry of phthalazine derivatives has been of increasing interest since many of these compounds have found chemotherapeutic applications, especially as antihypertensive agents (De Stevens, 1981). 3-substituted 1,2,4-triazolo[3,4-a]phthalazines have been described as high affinity ligands for benzodiazepine receptor site (e.g., Tarzia et al., 1989).

In the Cambridge Database (Allen, 2002; ver. 5.30, November 2008) there are only four structures with 1,2,4-triazolo[3,4-a]phthalazine units. This includes 3-chloromethyl-1,2,4-triazolophthalazine (Burton-Pye et al., 2005), 3-(p-methoxyphenyl)triazolo(4,3 - a)phthalazine (Boulanger et al., 1991), 3-(p-methoxyphenyl)-6-(N,N-bis(2-methoxyethyl)amino)triazolo(4,3 - a)phthalazine (Boulanger et al., 1991), and 3-butyl-s-triazolo(3,4 - a)phthalazine (Zimmer et al., 1995). Here we present the X-ray structural analysis of the hydrate of 3-methyl[1,2,4]triazolo[3,4-a]phthalazine.

The molecules are almost planar with maximum deviation from the least-squares plane through all 13 ring atoms of 0.041 (2) Å (Fig. 1). The dihedral angle between the planes of the phenyl and the 1,2,4-triazole rings amount to 2.84 (7)°.

In the crystal the principal motif is built of two molecules of 3-methyl[1,2,4]triazolo[3,4-a]phthalazine and two water molecules, which are connected by means of O—H···N hydrogen bonds into centrosymmetric dimers which can be described according to the graph set notation as R44(10), cf. (Fig. 2). The planar molecules are stacked in a head-to-tail manner in the direction of the crystallographic a-axis with distances between the subsequent mean planes of 3.43 (1)Å and 3.46 (1)Å.

Experimental

1-Hydrazinophthalazine (2 g, 12.5 mmol) in 10 ml acetic acid was refluxed for 4 h. The reaction mixture was quenched to ice cold water and the solid separated was collected by filteration. The solid obtained was crystallized from methanol. Crystals for x-ray measurements were grown by a slow evaporation of ethyl acetate solution (m.p.: 421–423 K).

Refinement

Hydrogen atoms from the methyl group were placed in idealized positions and were refined as riding model with Uiso values set at 1.5 times Ueq of their carrier carbon atom. All other hydrogen atoms, including those from water molecule, were freely refined.

Figures

Fig. 1.
View of the dimers in the crystal structure of the title compound with labelling and displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are depicted as spheres with arbitrary radii and hydrogen bonding is shown as dashed lines. Symmetry ...
Fig. 2.
Two mutually perpendicular views of the stacking in the crystal structure of the title compound.

Crystal data

C10H8N4·H2OZ = 2
Mr = 202.22F(000) = 212
Triclinic, P1Dx = 1.405 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.5418 Å
a = 7.3009 (9) ÅCell parameters from 2647 reflections
b = 7.9253 (9) Åθ = 6.4–75.6°
c = 9.2755 (10) ŵ = 0.80 mm1
α = 109.663 (10)°T = 295 K
β = 104.91 (1)°Block, colourless
γ = 95.830 (9)°0.4 × 0.2 × 0.1 mm
V = 477.83 (10) Å3

Data collection

Oxford Diffraction SuperNova (single source at offset) Atlas diffractometer1772 independent reflections
Radiation source: Nova (Cu) X-ray Source1615 reflections with I > 2σ(I)
mirrorRint = 0.024
Detector resolution: 5.2679 pixels mm-1θmax = 70.0°, θmin = 6.4°
ω scansh = −7→8
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −9→9
Tmin = 0.831, Tmax = 0.932l = −10→11
2893 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.12w = 1/[σ2(Fo2) + (0.07P)2 + 0.128P] where P = (Fo2 + 2Fc2)/3
1772 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.0820 (2)0.4413 (2)0.25290 (18)0.0576 (5)
N2−0.0116 (2)0.2599 (2)0.16838 (18)0.0585 (5)
C30.0258 (2)0.1699 (3)0.2642 (2)0.0504 (4)
C31−0.0377 (3)−0.0275 (3)0.2252 (2)0.0629 (5)
H31A−0.1301−0.08250.11930.094*
H31B−0.0966−0.04360.30240.094*
H31C0.0722−0.08470.22870.094*
N40.1420 (2)0.2902 (2)0.41193 (16)0.0455 (4)
N50.2127 (2)0.2489 (2)0.54647 (17)0.0530 (4)
C60.3218 (3)0.3879 (3)0.6698 (2)0.0533 (5)
H60.372 (3)0.360 (3)0.765 (3)0.070 (6)*
C70.3736 (2)0.5716 (2)0.6764 (2)0.0477 (4)
C80.4993 (3)0.7118 (3)0.8151 (2)0.0562 (5)
H80.557 (4)0.683 (3)0.913 (3)0.080 (7)*
C90.5466 (3)0.8835 (3)0.8153 (3)0.0600 (5)
H90.636 (3)0.978 (3)0.909 (3)0.067 (6)*
C100.4682 (3)0.9207 (3)0.6786 (3)0.0613 (5)
H100.506 (4)1.043 (4)0.685 (3)0.080 (7)*
C110.3434 (3)0.7866 (3)0.5412 (2)0.0573 (5)
H110.283 (3)0.805 (3)0.447 (3)0.074 (7)*
C120.2970 (2)0.6096 (2)0.5382 (2)0.0467 (4)
C130.1741 (2)0.4575 (3)0.4000 (2)0.0466 (4)
O1W0.2725 (3)0.6362 (3)0.0877 (2)0.0876 (6)
H1W20.198 (6)0.571 (6)0.125 (5)0.143 (14)*
H1W10.197 (4)0.662 (4)0.018 (4)0.092 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0568 (9)0.0734 (11)0.0449 (8)0.0125 (8)0.0080 (7)0.0313 (8)
N20.0558 (9)0.0759 (11)0.0431 (8)0.0143 (8)0.0092 (6)0.0263 (8)
C30.0470 (9)0.0637 (11)0.0399 (9)0.0137 (8)0.0129 (7)0.0185 (8)
C310.0655 (12)0.0629 (12)0.0510 (10)0.0102 (9)0.0132 (9)0.0145 (9)
N40.0483 (8)0.0565 (8)0.0363 (7)0.0158 (6)0.0120 (6)0.0228 (6)
N50.0653 (9)0.0569 (9)0.0416 (8)0.0159 (7)0.0124 (7)0.0265 (7)
C60.0634 (11)0.0610 (11)0.0382 (9)0.0159 (8)0.0103 (8)0.0253 (8)
C70.0495 (9)0.0572 (10)0.0413 (9)0.0157 (7)0.0159 (7)0.0218 (8)
C80.0594 (11)0.0645 (11)0.0429 (9)0.0142 (9)0.0142 (8)0.0191 (8)
C90.0565 (11)0.0608 (11)0.0555 (11)0.0067 (9)0.0189 (9)0.0136 (9)
C100.0616 (11)0.0558 (11)0.0717 (13)0.0122 (9)0.0251 (10)0.0274 (10)
C110.0586 (11)0.0634 (11)0.0599 (11)0.0164 (8)0.0184 (9)0.0345 (9)
C120.0444 (8)0.0585 (10)0.0451 (9)0.0165 (7)0.0168 (7)0.0255 (8)
C130.0454 (8)0.0595 (10)0.0435 (9)0.0164 (7)0.0150 (7)0.0275 (8)
O1W0.0682 (10)0.1226 (15)0.0838 (12)0.0115 (9)0.0052 (8)0.0695 (12)

Geometric parameters (Å, °)

N1—C131.312 (2)C7—C81.398 (3)
N1—N21.384 (2)C7—C121.404 (2)
N2—C31.309 (2)C8—C91.369 (3)
C3—N41.365 (2)C8—H81.01 (3)
C3—C311.476 (3)C9—C101.391 (3)
C31—H31A0.9600C9—H90.96 (2)
C31—H31B0.9600C10—C111.370 (3)
C31—H31C0.9600C10—H100.96 (3)
N4—C131.369 (2)C11—C121.399 (3)
N4—N51.3818 (18)C11—H110.94 (3)
N5—C61.289 (2)C12—C131.432 (3)
C6—C71.443 (3)O1W—H1W20.92 (5)
C6—H60.97 (2)O1W—H1W10.83 (3)
C13—N1—N2107.24 (15)C12—C7—C6118.75 (16)
C3—N2—N1108.84 (14)C9—C8—C7120.13 (18)
N2—C3—N4108.18 (16)C9—C8—H8121.1 (14)
N2—C3—C31127.98 (17)C7—C8—H8118.7 (14)
N4—C3—C31123.82 (16)C8—C9—C10120.41 (19)
C3—C31—H31A109.5C8—C9—H9119.8 (14)
C3—C31—H31B109.5C10—C9—H9119.8 (14)
H31A—C31—H31B109.5C11—C10—C9120.85 (19)
C3—C31—H31C109.5C11—C10—H10122.1 (15)
H31A—C31—H31C109.5C9—C10—H10117.0 (15)
H31B—C31—H31C109.5C10—C11—C12119.35 (18)
C3—N4—C13106.81 (14)C10—C11—H11124.5 (15)
C3—N4—N5126.01 (15)C12—C11—H11116.2 (15)
C13—N4—N5127.18 (15)C11—C12—C7120.10 (18)
C6—N5—N4113.22 (14)C11—C12—C13124.20 (16)
N5—C6—C7126.56 (16)C7—C12—C13115.70 (16)
N5—C6—H6113.6 (14)N1—C13—N4108.93 (16)
C7—C6—H6119.8 (14)N1—C13—C12132.48 (17)
C8—C7—C12119.14 (17)N4—C13—C12118.57 (15)
C8—C7—C6122.10 (16)H1W2—O1W—H1W1107 (3)
C13—N1—N2—C3−0.4 (2)C10—C11—C12—C71.7 (3)
N1—N2—C3—N40.5 (2)C10—C11—C12—C13−177.70 (16)
N1—N2—C3—C31−177.91 (17)C8—C7—C12—C11−1.3 (3)
N2—C3—N4—C13−0.45 (19)C6—C7—C12—C11179.58 (15)
C31—C3—N4—C13178.04 (16)C8—C7—C12—C13178.19 (14)
N2—C3—N4—N5179.64 (14)C6—C7—C12—C13−0.9 (2)
C31—C3—N4—N5−1.9 (3)N2—N1—C13—N40.06 (19)
C3—N4—N5—C6178.98 (16)N2—N1—C13—C12178.52 (17)
C13—N4—N5—C6−0.9 (2)C3—N4—C13—N10.23 (19)
N4—N5—C6—C7−0.6 (3)N5—N4—C13—N1−179.86 (14)
N5—C6—C7—C8−177.53 (18)C3—N4—C13—C12−178.47 (13)
N5—C6—C7—C121.6 (3)N5—N4—C13—C121.4 (3)
C12—C7—C8—C90.0 (3)C11—C12—C13—N10.7 (3)
C6—C7—C8—C9179.10 (17)C7—C12—C13—N1−178.71 (17)
C7—C8—C9—C100.8 (3)C11—C12—C13—N4179.08 (15)
C8—C9—C10—C11−0.4 (3)C7—C12—C13—N4−0.4 (2)
C9—C10—C11—C12−0.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W2···N10.92 (5)2.08 (5)2.987 (2)168 (4)
O1W—H1W1···N2i0.83 (3)2.21 (3)3.043 (2)177 (3)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2160).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst 26, 343–350.
  • Boulanger, T., Evrard, C., Vercauteren, D. P., Evrard, G. & Durant, F. (1991). J. Crystallogr. Spectrosc. Res.21, 287–295.
  • Burton-Pye, B. P., Heath, S. L. & Faulkner, S. (2005). Dalton Trans. pp. 146–149. [PubMed]
  • Cheng, Y., Ma, B. & Wuld, F. (1999). J. Mater. Chem 9, 2183–2188.
  • Coates, W. J. (1999). In Comprehensive Heterocyclic Chemistry II, Vol. 6, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. Oxford: Pergamon Press.
  • De Stevens, G. (1981). Medicinal Research Reviews, Vol. 1, p 73. New York: Wiley-Interscience.
  • Oxford Diffraction (2009). CrysAlis Pro Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shubin, K. M., Kuznestsov, V. A. & Galishev, V. A. (2004). Tetrahedron Lett.45, 1407–1408.
  • Siemens (1989). XP Operations Manual Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Tarzia, G., Occelli, E. & Barone, D. (1989). Farmaco, 44, 3–16. [PubMed]
  • Yatani, A., Fuji, M., Nakao, Y., Kashino, S., Kinoshita, M., Mori, W. & Suzuki, S. (2001). Inorg. Chim. Acta, 316, 127–131.
  • Zimmer, H., Safwat, A. R., Ho, D., Amer, A. & Badawi, M. (1995). J. Org. Chem.60, 1908–1910.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography