PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2665–o2666.
Published online 2009 October 7. doi:  10.1107/S1600536809040252
PMCID: PMC2971305

6-Chloro-3-[5-(3-meth­oxy-8-methyl-4-quinol­yl)-1-phenyl-4,5-dihydro-1H-pyrazol-3-yl]-2-methyl-4-phenyl­quinoline

Abstract

In the title compound, C36H29ClN4O, the dihydro­pyrazole ring adopts an envelope conformation. The two quinoline ring systems (r.m.s. deviations = 0.029 and 0.018 Å) are oriented at a dihedral angle of 71.43 (4)°. One of the quinoline rings makes a dihedral angle of 65.40 (7)° with the phenyl substituent. In the crystal, mol­ecules are linked into chains along the b axis by inter­molecular C—H(...)N hydrogen bonds. In addition, C—H(...)π and π–π [centroid–centroid distance = 3.7325 (8) Å] inter­actions are observed.

Related literature

For general background to quinoline and its derivatives, see: Morimoto et al. (1991 [triangle]); Michael (1997 [triangle]); Markees et al. (1970 [triangle]); Campbell et al. (1988 [triangle]). For applications of quinolines, see: Maguire et al. (1994 [triangle]); Kalluraya & Sreenivasa (1998 [triangle]); Roma et al. (2000 [triangle]); Chen et al. (2001 [triangle]); Skraup (1880 [triangle]). For the synthesis of quinoline derivatives, see: Katritzky & Arend (1998 [triangle]); Jiang & Si (2002 [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2665-scheme1.jpg

Experimental

Crystal data

  • C36H29ClN4O
  • M r = 569.08
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2665-efi1.jpg
  • a = 14.1209 (3) Å
  • b = 20.2273 (4) Å
  • c = 10.1892 (2) Å
  • β = 95.358 (1)°
  • V = 2897.6 (1) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.17 mm−1
  • T = 100 K
  • 0.65 × 0.45 × 0.22 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.899, T max = 0.964
  • 57308 measured reflections
  • 10615 independent reflections
  • 8632 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.135
  • S = 1.08
  • 10615 reflections
  • 495 parameters
  • All H-atom parameters refined
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809040252/ci2931sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040252/ci2931Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF thanks Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY thanks USM for the award of a USM Fellowship. VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

Quinoline and its derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001; Skraup, 1880). Many synthetic methods such as Skraup, Doebner-Von Miller, Friedländer and Combes reactions have been developed for the preparation of quinolines, but due to their great importance, the synthesis of new derivatives of quinoline remains an active research area (Katritzky & Arend, 1998; Jiang & Si, 2002).

The title compound consists of two phenyl rings, two quinoline rings and a 4,5-dihydropyrazole ring (Fig. 1). The 4,5-dihydropyrazole ring (N2/N3/C16–C18) adopts an envelope conformation with C18 as the flap atom, and with puckering amplitude Q = 0.2121 (14) Å and [var phi] = 256.8 (3)° (Cremer & Pople, 1975). The N1/C1–C9 quinoline ring is planar with a maximum deviation of 0.046 (1) Å for atom C8 and in the N4/C19–C27 ring atom C19 deviates a maximum of 0.034 (1) Å. The two quinoline rings (N1/C1–C9 and N4/C19–C27) are oriented at angle of 71.43 (4)°. The C10–C15 benzene ring makes a dihedral angle of 65.40 (7)° with the N1/C1–C9 quinoline ring.

In the crystal structure, molecules are linked into chains along the b axis (Fig. 2) by intermolecular C13—H13···N1 hydrogen bonds (Table 1). In addition, the structure is stabilized by the C—H···π (Table 1) and π···π interactions [Cg1···Cg1iv = 3.7325 (8) Å; Cg1 is centroid of C21–C26 ring; (iv) 1 - x, 1 - y, -z].

Experimental

A mixture of 1-(6-chloro-2-methyl-4-phenylquinolin-3-yl)-3- (2-chloroquinolin-2-yl)prop-2-en-1-one (0.468 g, 0.001 M) and phenyl hydrazine in (0.756 g, 0.007 M) in distilled methanol was refluxed for 8 h and the resulting mixture was concentrated to remove the methanol and then poured onto ice and neutralized with dilute HCl. The resultant solid was filtered, dried and purified by column chromatography using 1:1 mixture of chloroform and petroleum ether. The resultant product was recrystallized from methanol (m.p. 456–458 K).

Refinement

All H atoms were located in a difference Fourier map and refined freely [C–H = 0.914 (18)–1.000 (20) Å].

Figures

Fig. 1.
The molecular structure of the title compound, with atom labels and 50% probability ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of title compound, viewed down c axis, showing molecules linked down the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C36H29ClN4OF(000) = 1192
Mr = 569.08Dx = 1.305 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9113 reflections
a = 14.1209 (3) Åθ = 2.3–32.7°
b = 20.2273 (4) ŵ = 0.17 mm1
c = 10.1892 (2) ÅT = 100 K
β = 95.358 (1)°Block, orange
V = 2897.6 (1) Å30.65 × 0.45 × 0.22 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer10615 independent reflections
Radiation source: fine-focus sealed tube8632 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 32.7°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −15→21
Tmin = 0.899, Tmax = 0.964k = −30→27
57308 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135All H-atom parameters refined
S = 1.08w = 1/[σ2(Fo2) + (0.0511P)2 + 1.8405P] where P = (Fo2 + 2Fc2)/3
10615 reflections(Δ/σ)max = 0.001
495 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.25829 (2)0.618905 (17)0.58916 (3)0.02412 (8)
O10.74552 (8)0.56821 (5)−0.26011 (9)0.0227 (2)
N11.06317 (8)0.82047 (6)0.24624 (12)0.0199 (2)
N20.79102 (8)0.76177 (5)0.05659 (10)0.0165 (2)
N30.72868 (8)0.74397 (5)−0.05041 (11)0.0184 (2)
N40.67553 (8)0.50533 (6)−0.10704 (11)0.0192 (2)
C11.10707 (9)0.77113 (6)0.32078 (14)0.0194 (2)
C21.18398 (11)0.78906 (8)0.41257 (17)0.0300 (3)
C31.22949 (11)0.74267 (8)0.49378 (17)0.0293 (3)
C41.19938 (9)0.67648 (7)0.48422 (13)0.0201 (2)
C51.12617 (9)0.65686 (6)0.39571 (13)0.0178 (2)
C61.07802 (9)0.70427 (6)0.31049 (12)0.0164 (2)
C70.99820 (9)0.68861 (6)0.21888 (12)0.0158 (2)
C80.95183 (9)0.73961 (6)0.14831 (12)0.0151 (2)
C90.98850 (9)0.80588 (6)0.16423 (12)0.0163 (2)
C100.96496 (10)0.61872 (6)0.20841 (13)0.0204 (3)
C111.02484 (14)0.56977 (8)0.16651 (16)0.0306 (3)
C120.99534 (18)0.50358 (8)0.16652 (19)0.0442 (5)
C130.90824 (17)0.48653 (9)0.2083 (2)0.0462 (5)
C140.84867 (14)0.53492 (8)0.24773 (19)0.0397 (5)
C150.87629 (11)0.60117 (7)0.24724 (15)0.0256 (3)
C160.86764 (9)0.72709 (6)0.05412 (12)0.0155 (2)
C170.86503 (10)0.68158 (7)−0.06366 (12)0.0181 (2)
C180.75850 (10)0.68279 (6)−0.11310 (12)0.0172 (2)
C190.70807 (9)0.62211 (6)−0.06680 (12)0.0172 (2)
C200.70797 (9)0.56215 (6)−0.14227 (12)0.0182 (2)
C210.63758 (9)0.50178 (6)0.01225 (13)0.0189 (2)
C220.60415 (10)0.43954 (7)0.05349 (15)0.0223 (3)
C230.56744 (11)0.43584 (8)0.17411 (16)0.0266 (3)
C240.56202 (11)0.49167 (8)0.25571 (15)0.0278 (3)
C250.59295 (11)0.55210 (8)0.21628 (14)0.0241 (3)
C260.63158 (10)0.55810 (7)0.09349 (13)0.0195 (2)
C270.66770 (10)0.61885 (7)0.04946 (13)0.0192 (2)
C280.63772 (9)0.77074 (6)−0.06672 (12)0.0171 (2)
C290.57125 (10)0.74588 (7)−0.16539 (14)0.0222 (3)
C300.48047 (11)0.77291 (8)−0.18384 (16)0.0269 (3)
C310.45373 (11)0.82413 (8)−0.10524 (16)0.0285 (3)
C320.51985 (11)0.84924 (8)−0.00833 (14)0.0265 (3)
C330.61164 (10)0.82371 (7)0.01109 (13)0.0207 (2)
C340.73866 (13)0.51077 (8)−0.34404 (16)0.0292 (3)
C350.60857 (12)0.38028 (7)−0.03465 (17)0.0278 (3)
C360.94255 (10)0.86304 (7)0.08870 (14)0.0204 (2)
H21.2038 (15)0.8352 (11)0.418 (2)0.039 (6)*
H31.2803 (15)0.7556 (11)0.559 (2)0.039 (6)*
H51.1052 (13)0.6108 (9)0.3924 (18)0.023 (4)*
H111.0823 (13)0.5813 (9)0.1388 (17)0.020 (4)*
H121.0391 (18)0.4749 (13)0.137 (2)0.057 (7)*
H130.8908 (16)0.4411 (12)0.208 (2)0.046 (6)*
H150.8328 (13)0.6360 (9)0.2763 (18)0.025 (5)*
H140.7855 (17)0.5205 (12)0.275 (2)0.050 (7)*
H17A0.9034 (12)0.7012 (9)−0.1273 (17)0.020 (4)*
H17B0.8907 (12)0.6379 (9)−0.0441 (17)0.017 (4)*
H180.7489 (12)0.6872 (8)−0.2091 (17)0.017 (4)*
H220.5425 (14)0.3943 (10)0.2025 (19)0.030 (5)*
H240.5361 (15)0.4868 (11)0.339 (2)0.041 (6)*
H250.5903 (14)0.5906 (10)0.271 (2)0.031 (5)*
H270.6655 (13)0.6569 (9)0.1041 (18)0.026 (5)*
H290.5881 (13)0.7098 (10)−0.2214 (19)0.028 (5)*
H300.4387 (14)0.7550 (10)−0.251 (2)0.030 (5)*
H310.3914 (15)0.8436 (10)−0.117 (2)0.037 (5)*
H320.5040 (14)0.8860 (10)0.0468 (19)0.029 (5)*
H330.6560 (13)0.8420 (9)0.0747 (19)0.027 (5)*
H34A0.7653 (15)0.5244 (11)−0.424 (2)0.038 (6)*
H34B0.7735 (15)0.4747 (11)−0.298 (2)0.037 (5)*
H34C0.6709 (15)0.4980 (10)−0.365 (2)0.033 (5)*
H35A0.6724 (16)0.3750 (11)−0.067 (2)0.042 (6)*
H35B0.5669 (16)0.3864 (11)−0.115 (2)0.042 (6)*
H35C0.5922 (16)0.3408 (12)0.011 (2)0.044 (6)*
H36A0.9858 (14)0.8999 (10)0.0947 (19)0.027 (5)*
H36B0.9251 (13)0.8521 (9)−0.0029 (19)0.027 (5)*
H36C0.8859 (14)0.8752 (9)0.127 (2)0.029 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.02182 (15)0.02468 (16)0.02474 (16)0.00263 (12)−0.00384 (11)0.00766 (12)
O10.0323 (5)0.0186 (5)0.0175 (4)−0.0014 (4)0.0039 (4)−0.0057 (3)
N10.0191 (5)0.0153 (5)0.0246 (5)−0.0015 (4)−0.0016 (4)0.0040 (4)
N20.0211 (5)0.0145 (5)0.0131 (4)0.0007 (4)−0.0026 (4)−0.0008 (3)
N30.0226 (5)0.0156 (5)0.0156 (5)0.0036 (4)−0.0048 (4)−0.0046 (4)
N40.0207 (5)0.0160 (5)0.0198 (5)0.0024 (4)−0.0038 (4)−0.0019 (4)
C10.0174 (5)0.0162 (6)0.0237 (6)−0.0019 (4)−0.0025 (5)0.0035 (4)
C20.0256 (7)0.0195 (7)0.0417 (9)−0.0067 (5)−0.0132 (6)0.0058 (6)
C30.0230 (6)0.0246 (7)0.0374 (8)−0.0052 (5)−0.0128 (6)0.0063 (6)
C40.0182 (5)0.0206 (6)0.0208 (6)0.0015 (5)−0.0020 (4)0.0054 (5)
C50.0190 (5)0.0154 (6)0.0189 (6)0.0014 (4)0.0013 (4)0.0019 (4)
C60.0171 (5)0.0152 (5)0.0168 (5)0.0006 (4)0.0011 (4)0.0014 (4)
C70.0199 (5)0.0136 (5)0.0139 (5)0.0008 (4)0.0013 (4)−0.0005 (4)
C80.0183 (5)0.0141 (5)0.0129 (5)0.0008 (4)0.0007 (4)−0.0008 (4)
C90.0178 (5)0.0146 (5)0.0168 (5)0.0004 (4)0.0022 (4)0.0021 (4)
C100.0307 (7)0.0128 (5)0.0160 (5)0.0004 (5)−0.0074 (5)0.0001 (4)
C110.0453 (9)0.0196 (7)0.0253 (7)0.0092 (6)−0.0056 (6)−0.0045 (5)
C120.0746 (14)0.0187 (7)0.0349 (9)0.0165 (8)−0.0187 (9)−0.0067 (6)
C130.0659 (13)0.0164 (7)0.0494 (11)−0.0091 (8)−0.0313 (10)0.0056 (7)
C140.0447 (10)0.0240 (8)0.0445 (10)−0.0143 (7)−0.0266 (8)0.0164 (7)
C150.0305 (7)0.0187 (6)0.0247 (7)−0.0061 (5)−0.0127 (5)0.0068 (5)
C160.0213 (5)0.0126 (5)0.0123 (5)0.0000 (4)−0.0001 (4)−0.0008 (4)
C170.0229 (6)0.0177 (6)0.0136 (5)0.0023 (5)0.0008 (4)−0.0032 (4)
C180.0249 (6)0.0142 (5)0.0121 (5)0.0022 (4)−0.0012 (4)−0.0026 (4)
C190.0216 (6)0.0150 (5)0.0144 (5)0.0027 (4)−0.0025 (4)−0.0019 (4)
C200.0202 (6)0.0173 (6)0.0161 (5)0.0028 (4)−0.0028 (4)−0.0025 (4)
C210.0186 (5)0.0179 (6)0.0189 (6)0.0027 (4)−0.0052 (4)0.0015 (4)
C220.0199 (6)0.0182 (6)0.0272 (7)0.0015 (5)−0.0061 (5)0.0035 (5)
C230.0246 (6)0.0248 (7)0.0293 (7)−0.0007 (5)−0.0041 (5)0.0087 (5)
C240.0286 (7)0.0325 (8)0.0217 (7)0.0011 (6)−0.0001 (5)0.0087 (6)
C250.0267 (7)0.0266 (7)0.0186 (6)0.0023 (5)0.0003 (5)0.0020 (5)
C260.0214 (6)0.0201 (6)0.0161 (5)0.0024 (5)−0.0033 (4)0.0012 (4)
C270.0245 (6)0.0176 (6)0.0147 (5)0.0021 (5)−0.0020 (4)−0.0017 (4)
C280.0213 (6)0.0153 (5)0.0145 (5)0.0013 (4)−0.0001 (4)0.0025 (4)
C290.0249 (6)0.0197 (6)0.0206 (6)0.0001 (5)−0.0042 (5)0.0003 (5)
C300.0233 (6)0.0290 (7)0.0270 (7)−0.0021 (6)−0.0048 (5)0.0039 (6)
C310.0225 (6)0.0356 (8)0.0276 (7)0.0060 (6)0.0038 (5)0.0084 (6)
C320.0296 (7)0.0306 (8)0.0199 (6)0.0098 (6)0.0055 (5)0.0021 (5)
C330.0271 (6)0.0208 (6)0.0142 (5)0.0040 (5)0.0013 (5)0.0008 (4)
C340.0405 (9)0.0231 (7)0.0245 (7)−0.0018 (6)0.0062 (6)−0.0116 (5)
C350.0274 (7)0.0174 (6)0.0371 (8)0.0008 (5)−0.0049 (6)0.0006 (6)
C360.0222 (6)0.0151 (6)0.0233 (6)0.0003 (5)−0.0005 (5)0.0043 (5)

Geometric parameters (Å, °)

Cl1—C41.7394 (13)C17—H17A0.968 (18)
O1—C201.3626 (16)C17—H17B0.969 (17)
O1—C341.4407 (17)C18—C191.5161 (18)
N1—C91.3163 (17)C18—H180.979 (17)
N1—C11.3673 (17)C19—C271.3633 (18)
N2—C161.2917 (17)C19—C201.4361 (17)
N2—N31.3835 (15)C21—C261.4153 (19)
N3—C281.3895 (17)C21—C221.4218 (19)
N3—C181.4722 (16)C22—C231.380 (2)
N4—C201.3001 (17)C22—C351.503 (2)
N4—C211.3753 (18)C23—C241.409 (2)
C1—C21.413 (2)C23—H220.97 (2)
C1—C61.4144 (18)C24—C251.371 (2)
C2—C31.371 (2)C24—H240.96 (2)
C2—H20.97 (2)C25—C261.4160 (19)
C3—C41.405 (2)C25—H250.96 (2)
C3—H30.97 (2)C26—C271.4193 (19)
C4—C51.3658 (19)C27—H270.952 (19)
C5—C61.4232 (18)C28—C331.4023 (18)
C5—H50.977 (18)C28—C291.4030 (19)
C6—C71.4301 (18)C29—C301.390 (2)
C7—C81.3864 (17)C29—H290.969 (19)
C7—C101.4904 (18)C30—C311.384 (2)
C8—C91.4407 (17)C30—H300.93 (2)
C8—C161.4783 (18)C31—C321.390 (2)
C9—C361.5022 (18)C31—H310.96 (2)
C10—C151.394 (2)C32—C331.392 (2)
C10—C111.395 (2)C32—H320.97 (2)
C11—C121.402 (3)C33—H330.934 (19)
C11—H110.914 (18)C34—H34A0.97 (2)
C12—C131.382 (4)C34—H34B0.97 (2)
C12—H120.92 (3)C34—H34C1.00 (2)
C13—C141.375 (3)C35—H35A0.99 (2)
C13—H130.95 (2)C35—H35B0.97 (2)
C14—C151.396 (2)C35—H35C0.96 (2)
C14—H141.00 (2)C36—H36A0.96 (2)
C15—H150.998 (19)C36—H36B0.97 (2)
C16—C171.5101 (17)C36—H36C0.96 (2)
C17—C181.5413 (19)
C20—O1—C34116.13 (11)C19—C18—H18111.1 (10)
C9—N1—C1118.93 (11)C17—C18—H18111.5 (10)
C16—N2—N3108.41 (10)C27—C19—C20116.41 (12)
N2—N3—C28120.39 (10)C27—C19—C18123.79 (11)
N2—N3—C18111.96 (10)C20—C19—C18119.61 (11)
C28—N3—C18125.06 (11)N4—C20—O1119.93 (11)
C20—N4—C21117.81 (11)N4—C20—C19125.56 (12)
N1—C1—C2117.45 (12)O1—C20—C19114.51 (11)
N1—C1—C6122.92 (12)N4—C21—C26121.64 (12)
C2—C1—C6119.62 (12)N4—C21—C22118.35 (12)
C3—C2—C1120.80 (14)C26—C21—C22120.01 (12)
C3—C2—H2120.2 (13)C23—C22—C21118.29 (13)
C1—C2—H2119.0 (13)C23—C22—C35121.95 (14)
C2—C3—C4119.24 (13)C21—C22—C35119.75 (13)
C2—C3—H3120.4 (13)C22—C23—C24121.87 (14)
C4—C3—H3120.4 (13)C22—C23—H22119.5 (12)
C5—C4—C3121.87 (12)C24—C23—H22118.6 (12)
C5—C4—Cl1120.03 (11)C25—C24—C23120.36 (14)
C3—C4—Cl1118.10 (10)C25—C24—H24120.6 (13)
C4—C5—C6119.75 (12)C23—C24—H24119.0 (13)
C4—C5—H5120.6 (11)C24—C25—C26119.67 (14)
C6—C5—H5119.7 (11)C24—C25—H25121.4 (12)
C1—C6—C5118.70 (12)C26—C25—H25118.9 (12)
C1—C6—C7117.75 (11)C21—C26—C25119.79 (13)
C5—C6—C7123.47 (12)C21—C26—C27117.97 (12)
C8—C7—C6118.62 (11)C25—C26—C27122.21 (13)
C8—C7—C10122.57 (11)C19—C27—C26120.55 (12)
C6—C7—C10118.72 (11)C19—C27—H27120.6 (11)
C7—C8—C9119.11 (11)C26—C27—H27118.8 (11)
C7—C8—C16121.43 (11)N3—C28—C33121.25 (12)
C9—C8—C16119.43 (11)N3—C28—C29119.68 (12)
N1—C9—C8122.57 (11)C33—C28—C29119.05 (12)
N1—C9—C36115.77 (11)C30—C29—C28120.18 (14)
C8—C9—C36121.66 (11)C30—C29—H29119.3 (11)
C15—C10—C11119.50 (14)C28—C29—H29120.5 (11)
C15—C10—C7120.43 (12)C31—C30—C29120.95 (14)
C11—C10—C7119.97 (14)C31—C30—H30121.8 (12)
C10—C11—C12119.29 (19)C29—C30—H30117.3 (12)
C10—C11—H11119.6 (11)C30—C31—C32118.89 (14)
C12—C11—H11121.1 (11)C30—C31—H31122.2 (13)
C13—C12—C11120.74 (18)C32—C31—H31118.9 (13)
C13—C12—H12126.1 (16)C31—C32—C33121.34 (14)
C11—C12—H12113.2 (16)C31—C32—H32121.0 (12)
C14—C13—C12119.91 (16)C33—C32—H32117.6 (12)
C14—C13—H13121.5 (14)C32—C33—C28119.55 (13)
C12—C13—H13118.5 (14)C32—C33—H33120.4 (12)
C13—C14—C15120.25 (19)C28—C33—H33120.0 (12)
C13—C14—H14117.3 (14)O1—C34—H34A105.0 (13)
C15—C14—H14122.4 (14)O1—C34—H34B108.5 (12)
C10—C15—C14120.28 (17)H34A—C34—H34B113.3 (17)
C10—C15—H15119.9 (11)O1—C34—H34C110.3 (12)
C14—C15—H15119.9 (11)H34A—C34—H34C109.5 (17)
N2—C16—C8121.23 (11)H34B—C34—H34C110.0 (17)
N2—C16—C17112.85 (11)C22—C35—H35A111.8 (13)
C8—C16—C17125.37 (11)C22—C35—H35B110.4 (13)
C16—C17—C18101.58 (10)H35A—C35—H35B103.4 (18)
C16—C17—H17A108.0 (10)C22—C35—H35C110.2 (14)
C18—C17—H17A111.4 (10)H35A—C35—H35C109.7 (18)
C16—C17—H17B114.3 (10)H35B—C35—H35C111.2 (18)
C18—C17—H17B114.6 (10)C9—C36—H36A108.8 (12)
H17A—C17—H17B106.8 (14)C9—C36—H36B112.2 (11)
N3—C18—C19112.57 (11)H36A—C36—H36B109.9 (16)
N3—C18—C17100.46 (10)C9—C36—H36C108.9 (12)
C19—C18—C17110.97 (10)H36A—C36—H36C109.1 (16)
N3—C18—H18109.8 (10)H36B—C36—H36C108.0 (16)
C16—N2—N3—C28175.71 (12)N2—N3—C18—C1997.03 (13)
C16—N2—N3—C1813.06 (14)C28—N3—C18—C19−64.65 (16)
C9—N1—C1—C2−176.86 (14)N2—N3—C18—C17−21.06 (13)
C9—N1—C1—C62.4 (2)C28—N3—C18—C17177.26 (12)
N1—C1—C2—C3177.85 (16)C16—C17—C18—N319.72 (12)
C6—C1—C2—C3−1.4 (2)C16—C17—C18—C19−99.54 (11)
C1—C2—C3—C40.5 (3)N3—C18—C19—C27−22.39 (18)
C2—C3—C4—C50.3 (2)C17—C18—C19—C2789.31 (15)
C2—C3—C4—Cl1−179.73 (14)N3—C18—C19—C20162.75 (11)
C3—C4—C5—C6−0.3 (2)C17—C18—C19—C20−85.55 (14)
Cl1—C4—C5—C6179.75 (10)C21—N4—C20—O1−179.46 (11)
N1—C1—C6—C5−177.81 (12)C21—N4—C20—C190.3 (2)
C2—C1—C6—C51.4 (2)C34—O1—C20—N45.31 (18)
N1—C1—C6—C7−0.9 (2)C34—O1—C20—C19−174.44 (12)
C2—C1—C6—C7178.31 (13)C27—C19—C20—N4−2.2 (2)
C4—C5—C6—C1−0.57 (19)C18—C19—C20—N4172.99 (12)
C4—C5—C6—C7−177.28 (12)C27—C19—C20—O1177.49 (12)
C1—C6—C7—C8−1.97 (18)C18—C19—C20—O1−7.27 (17)
C5—C6—C7—C8174.77 (12)C20—N4—C21—C261.45 (19)
C1—C6—C7—C10−178.68 (12)C20—N4—C21—C22−178.37 (12)
C5—C6—C7—C10−1.95 (19)N4—C21—C22—C23179.02 (12)
C6—C7—C8—C93.31 (17)C26—C21—C22—C23−0.81 (19)
C10—C7—C8—C9179.89 (12)N4—C21—C22—C35−1.63 (19)
C6—C7—C8—C16−178.70 (11)C26—C21—C22—C35178.54 (12)
C10—C7—C8—C16−2.12 (19)C21—C22—C23—C240.3 (2)
C1—N1—C9—C8−0.94 (19)C35—C22—C23—C24−179.01 (14)
C1—N1—C9—C36178.32 (12)C22—C23—C24—C250.5 (2)
C7—C8—C9—N1−1.94 (19)C23—C24—C25—C26−0.8 (2)
C16—C8—C9—N1−179.96 (12)N4—C21—C26—C25−179.30 (12)
C7—C8—C9—C36178.85 (12)C22—C21—C26—C250.52 (19)
C16—C8—C9—C360.82 (18)N4—C21—C26—C27−1.13 (19)
C8—C7—C10—C15−63.05 (17)C22—C21—C26—C27178.69 (12)
C6—C7—C10—C15113.53 (14)C24—C25—C26—C210.3 (2)
C8—C7—C10—C11120.55 (15)C24—C25—C26—C27−177.82 (14)
C6—C7—C10—C11−62.87 (17)C20—C19—C27—C262.46 (19)
C15—C10—C11—C12−1.1 (2)C18—C19—C27—C26−172.55 (12)
C7—C10—C11—C12175.28 (14)C21—C26—C27—C19−0.95 (19)
C10—C11—C12—C13−0.4 (3)C25—C26—C27—C19177.18 (13)
C11—C12—C13—C141.4 (3)N2—N3—C28—C3310.38 (19)
C12—C13—C14—C15−0.8 (3)C18—N3—C28—C33170.62 (12)
C11—C10—C15—C141.8 (2)N2—N3—C28—C29−171.60 (12)
C7—C10—C15—C14−174.63 (13)C18—N3—C28—C29−11.36 (19)
C13—C14—C15—C10−0.8 (2)N3—C28—C29—C30−179.09 (13)
N3—N2—C16—C8173.70 (11)C33—C28—C29—C30−1.0 (2)
N3—N2—C16—C171.81 (15)C28—C29—C30—C31−0.5 (2)
C7—C8—C16—N2131.09 (13)C29—C30—C31—C321.1 (2)
C9—C8—C16—N2−50.93 (17)C30—C31—C32—C33−0.3 (2)
C7—C8—C16—C17−58.08 (17)C31—C32—C33—C28−1.3 (2)
C9—C8—C16—C17119.90 (14)N3—C28—C33—C32179.91 (13)
N2—C16—C17—C18−14.56 (14)C29—C28—C33—C321.9 (2)
C8—C16—C17—C18173.95 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13···N1i0.95 (2)2.56 (2)3.410 (2)149 (2)
C14—H14···Cg11.00 (2)2.92 (2)3.685 (2)134 (2)
C17—H17A···Cg2ii0.97 (2)2.55 (2)3.5018 (14)169 (1)
C25—H25···Cg3iii0.96 (2)2.79 (2)3.7359 (17)169 (2)

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x, −y+1/2, z−3/2; (iii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2931).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem.31, 1031–1035. [PubMed]
  • Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem.44, 2374–2377. [PubMed]
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Jiang, B. & Si, Y.-G. (2002). J. Org. Chem.67, 9449–9451. [PubMed]
  • Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404. [PubMed]
  • Katritzky, A. R. & Arend, M. I. (1998). J. Org. Chem.63, 9989–9991.
  • Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem.37, 2129–2137. [PubMed]
  • Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem.13, 324–326. [PubMed]
  • Michael, J. P. (1997). Nat. Prod. Rep.14, 605–608.
  • Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.
  • Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem.35, 1021–1026. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Skraup, H. (1880). Ber. Dtsch Chem. Ges.13, 2086–2088.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography