PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2799.
Published online 2009 October 23. doi:  10.1107/S1600536809042135
PMCID: PMC2971304

4-(1,3-Thia­zolidin-2-yl)phenol

Abstract

In the title compound, C9H11NOS, the thia­zolidinyl ring is almost perpendicular to the phenyl ring with N—C—C—C torsion angles of 71.7 (2) and 107.1 (2)°. In the crystal, mol­ecules are connected via N—H(...)O and O—H(...)N hydrogen bonds, forming layers.

Related literature

For the cyclization of 2-amino-ethanthiol Schiff bases, see: Al-Sayyab et al. (1968 [triangle]); Stacy & Strong (1967 [triangle]); Thompson & Busch (1964 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2799-scheme1.jpg

Experimental

Crystal data

  • C9H11NOS
  • M r = 181.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2799-efi1.jpg
  • a = 12.3638 (6) Å
  • b = 8.9683 (5) Å
  • c = 15.8249 (8) Å
  • V = 1754.7 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 173 K
  • 0.47 × 0.45 × 0.16 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.865, T max = 0.951
  • 9635 measured reflections
  • 1919 independent reflections
  • 1615 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.105
  • S = 1.07
  • 1919 reflections
  • 115 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809042135/im2144sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042135/im2144Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks the National Science Foundation of China for financial support.

supplementary crystallographic information

Comment

In our search for a new synthetic route to imipenem, a carbapenem antibiotic, we got a thiazolidine compound from a reaction of p-hydroxybenzaldehyde with 2-amino-ethanthiol, despite of our initial plan to prepare a Schiff base compound. This is consistent with reports that the 2-amino-ethanthiol Schiff base compounds can undergo intromolecular cyclization to form thiazolidines (Al-Sayyab et al., 1968; Thompson & Busch, 1964; Stacy & Strong, 1967).

In the molecular sturcture (Fig. 1), as it is expected the thiazolidinyl ring is not planar, showing a N(1)—C(1)—C(2)—S(1) torsion angle of -33.7 (2)°. Furthermore, the thiazolidinyl ring is almost perpendicular to the phenyl ring, with torsion angles N(1)—C(3)—C(4)—C(9) of 71.7 (2)° and N(1)—C(3)—C(4)—C(5) of 107.1 (2)°. In Fig. 1 the chiral center C(3) adopts R configuation. Nevertheless, due to space group symmetry a reacemate has been formed and both enantiomers are present in the crystal structure.

In the crystal structure two adjacent molecules are connected via N—H···O and O—H···N hydrogen bonds to form centrosymmetric molecule pairs. These pairs are further linked by additional N—H···O and O—H···N intermolecular hydrogen bonds leading to the observed layered supramolecular (Fig. 2).

Experimental

2-Amino-ethanthiol 0.77 g (0.001 mol) was mixed with p-hydroxybenzaldehyde 1.22 g (0.001 mol) in ethanol (10 ml) and the mixture refluxed for 2 h. The solvent was evaporated to dryness under reduced pressure and the remaining residue recrystallized from ethanol to afford 1.5 g of yellow block crystals. (Yield 85%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanolic solution. Spectroscopic analysis: 1H NMR (DMSO-d6, δ, p.p.m.): 2.75–2.90 (m, 2H), 2.85–3.05 (m, 2H), 3.50 (m, 1H), 5.35 (s, 1H), 6.70 (d, 2H), 7.25 (d, 2H), 9.35 (s, 1H); elemental analysis, calculated for C9H11NOS: C, 59.67; H, 6.08; N, 7.73; found: C, 59.33; H, 5.93; N 7.41%.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic 1.00 Å, Uiso = 1.2Ueq (C) for CH, 0.99 Å, Uiso = 1.2Ueq (C) for CH2 and 0.88 Å, Uiso = 1.5Ueq (N) for the NH atoms.

Figures

Fig. 1.
The molecular structure with thermal ellipsoids drawn at the 30% probability level.
Fig. 2.
Crystal lattice along c axis. H atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

C9H11NOSF(000) = 768
Mr = 181.25Dx = 1.372 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4931 reflections
a = 12.3638 (6) Åθ = 2.6–27.0°
b = 8.9683 (5) ŵ = 0.32 mm1
c = 15.8249 (8) ÅT = 173 K
V = 1754.7 (2) Å3Block, colorless
Z = 80.47 × 0.45 × 0.16 mm

Data collection

Bruker SMART 1000 CCD diffractometer1919 independent reflections
Radiation source: fine-focus sealed tube1615 reflections with I > 2σ(I)
graphiteRint = 0.022
ω scansθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −15→15
Tmin = 0.865, Tmax = 0.951k = −11→8
9635 measured reflectionsl = −20→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0611P)2 + 0.7197P] where P = (Fo2 + 2Fc2)/3
1919 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.47979 (3)0.18010 (5)0.70817 (2)0.02679 (16)
C10.27121 (14)0.1895 (2)0.74816 (11)0.0355 (4)
H1B0.25010.29240.73270.043*
H1C0.20460.12880.75300.043*
C20.34426 (15)0.1245 (3)0.67981 (12)0.0417 (5)
H2A0.32450.16460.62360.050*
H2B0.33810.01450.67830.050*
C30.43704 (12)0.24880 (18)0.81446 (9)0.0217 (3)
H30.43230.36000.81190.026*
C40.51646 (12)0.20804 (17)0.88292 (9)0.0209 (3)
C50.55139 (13)0.31669 (17)0.93977 (10)0.0235 (3)
H50.52550.41590.93420.028*
C60.62307 (13)0.28297 (18)1.00422 (10)0.0248 (4)
H60.64610.35871.04210.030*
C70.66115 (13)0.13804 (18)1.01328 (9)0.0227 (3)
C80.62657 (13)0.02820 (18)0.95705 (10)0.0239 (3)
H80.6521−0.07120.96300.029*
C90.55519 (12)0.06344 (18)0.89265 (10)0.0229 (3)
H90.5323−0.01220.85460.027*
N10.32818 (11)0.19058 (16)0.82922 (9)0.0249 (3)
H10.3303 (16)0.103 (3)0.8493 (12)0.030*
O10.73103 (10)0.09658 (14)1.07553 (7)0.0302 (3)
H1A0.7567 (19)0.172 (3)1.0971 (13)0.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0253 (2)0.0357 (3)0.0194 (2)0.00118 (16)0.00148 (14)−0.00048 (16)
C10.0239 (9)0.0512 (12)0.0313 (9)0.0019 (8)−0.0045 (7)−0.0055 (8)
C20.0308 (9)0.0616 (14)0.0326 (9)−0.0052 (9)−0.0028 (8)−0.0139 (9)
C30.0218 (7)0.0221 (8)0.0213 (7)0.0008 (6)0.0012 (6)−0.0004 (6)
C40.0213 (7)0.0232 (8)0.0182 (7)−0.0019 (6)0.0023 (6)0.0005 (6)
C50.0265 (8)0.0188 (7)0.0252 (8)−0.0003 (6)0.0013 (6)−0.0004 (6)
C60.0283 (8)0.0229 (8)0.0233 (7)−0.0042 (6)−0.0009 (6)−0.0046 (6)
C70.0214 (7)0.0271 (8)0.0197 (7)−0.0034 (6)0.0012 (6)0.0013 (6)
C80.0259 (8)0.0204 (7)0.0254 (8)0.0011 (6)0.0009 (6)−0.0003 (6)
C90.0236 (7)0.0233 (8)0.0218 (7)−0.0033 (6)0.0008 (6)−0.0027 (6)
N10.0219 (7)0.0266 (7)0.0262 (7)0.0003 (5)0.0013 (5)0.0001 (6)
O10.0337 (7)0.0275 (6)0.0293 (6)−0.0026 (5)−0.0117 (5)−0.0012 (5)

Geometric parameters (Å, °)

S1—C21.8049 (19)C4—C51.395 (2)
S1—C31.8676 (15)C5—C61.385 (2)
C1—N11.463 (2)C5—H50.9500
C1—C21.525 (3)C6—C71.390 (2)
C1—H1B0.9900C6—H60.9500
C1—H1C0.9900C7—O11.3620 (19)
C2—H2A0.9900C7—C81.395 (2)
C2—H2B0.9900C8—C91.385 (2)
C3—N11.462 (2)C8—H80.9500
C3—C41.507 (2)C9—H90.9500
C3—H31.0000N1—H10.85 (2)
C4—C91.391 (2)O1—H1A0.82 (2)
C2—S1—C393.00 (8)C5—C4—C3119.73 (14)
N1—C1—C2109.83 (14)C6—C5—C4121.38 (15)
N1—C1—H1B109.7C6—C5—H5119.3
C2—C1—H1B109.7C4—C5—H5119.3
N1—C1—H1C109.7C5—C6—C7119.81 (14)
C2—C1—H1C109.7C5—C6—H6120.1
H1B—C1—H1C108.2C7—C6—H6120.1
C1—C2—S1105.55 (12)O1—C7—C6123.01 (14)
C1—C2—H2A110.6O1—C7—C8117.59 (14)
S1—C2—H2A110.6C6—C7—C8119.40 (14)
C1—C2—H2B110.6C9—C8—C7120.25 (15)
S1—C2—H2B110.6C9—C8—H8119.9
H2A—C2—H2B108.8C7—C8—H8119.9
N1—C3—C4113.46 (13)C8—C9—C4120.91 (14)
N1—C3—S1106.65 (10)C8—C9—H9119.5
C4—C3—S1112.52 (11)C4—C9—H9119.5
N1—C3—H3108.0C3—N1—C1107.78 (13)
C4—C3—H3108.0C3—N1—H1111.2 (14)
S1—C3—H3108.0C1—N1—H1109.8 (13)
C9—C4—C5118.25 (14)C7—O1—H1A108.7 (15)
C9—C4—C3122.01 (14)
N1—C1—C2—S1−33.3 (2)C5—C6—C7—O1−179.46 (15)
C3—S1—C2—C110.32 (15)C5—C6—C7—C80.1 (2)
C2—S1—C3—N114.01 (13)O1—C7—C8—C9179.74 (14)
C2—S1—C3—C4139.03 (13)C6—C7—C8—C90.2 (2)
N1—C3—C4—C971.65 (19)C7—C8—C9—C4−0.2 (2)
S1—C3—C4—C9−49.55 (18)C5—C4—C9—C80.0 (2)
N1—C3—C4—C5−107.07 (17)C3—C4—C9—C8−178.77 (14)
S1—C3—C4—C5131.73 (13)C4—C3—N1—C1−159.92 (14)
C9—C4—C5—C60.3 (2)S1—C3—N1—C1−35.47 (15)
C3—C4—C5—C6179.05 (14)C2—C1—N1—C345.7 (2)
C4—C5—C6—C7−0.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.85 (2)2.28 (2)3.073 (2)156 (2)
O1—H1A···N1ii0.82 (2)1.91 (2)2.713 (2)164 (2)

Symmetry codes: (i) −x+1, −y, −z+2; (ii) x+1/2, −y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2144).

References

  • Al-Sayyab, A. F., Lawson, A. & Stevens, J. O. (1968). J. Chem. Soc. C, pp. 411–415. [PubMed]
  • Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stacy, G. W. & Strong, P. L. (1967). J. Org. Chem.32, 1487–1491.
  • Thompson, M. C. & Busch, D. H. (1964). J. Am. Chem. Soc.86, 213–217.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography