PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2852.
Published online 2009 October 28. doi:  10.1107/S1600536809043402
PMCID: PMC2971292

2-(2-Nitro­phen­yl)-1,3-dioxan-5-ol

Abstract

In the title compound, C10H11NO5, the six-membered 1,3-dioxane ring displays a chair conformation, with the hydr­oxy and 2-nitro­phenyl groups in equatorial positions, which minimizes steric hindrance. In the crystal, mol­ecules are linked into chains along the b axis by inter­molecular O—H(...)O hydrogen bonds.

Related literature

For background to the condensation of glycerol with aldehydes and ketones to [1,3]dioxan-5-ols and [1,3]dioxolan-4-yl-methanols, see: Deutsch et al. (2007 [triangle]); Hill et al. (1928 [triangle]). Six-membered ring acetals are potential precursors for the production of the green platform chemicals, e.g. 1,3-dihydroxy­acetone and 1,3-propane­diol, see: Wang et al. (2003 [triangle], 2009 [triangle]). For a related structure, see: Li et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2852-scheme1.jpg

Experimental

Crystal data

  • C10H11NO5
  • M r = 225.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2852-efi1.jpg
  • a = 8.0166 (4) Å
  • b = 10.6499 (5) Å
  • c = 12.4109 (6) Å
  • β = 101.221 (1)°
  • V = 1039.34 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 296 K
  • 0.35 × 0.19 × 0.12 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.960, T max = 0.986
  • 9906 measured reflections
  • 2346 independent reflections
  • 1466 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.110
  • S = 1.00
  • 2346 reflections
  • 147 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2006 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043402/pv2219sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043402/pv2219Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Professor Jian-Ming Gu of Zhejiang University for his help.

supplementary crystallographic information

Comment

The condensation of glycerol, a renewable raw materials, with aldehydes and ketones to [1,3]dioxan-5-ols and [1,3]dioxolan-4-yl-methanols was investigated for many years (Hill et al., 1928; Deutsch et al., 2007). The condensation products are used widely as novel chemical intermediates. The six-membered ring acetals are potential precursors for the production of the green platform chemicals, e.g., 1,3-dihydroxyacetone (Wang et al., 2009) and 1,3-propanediol (Wang et al., 2003).

In this article, we report the crystal structure of the title compoud (Fig. 1) which has been determined in our laboratory. Its main structure unit is a six-membered ring, [1,3]dioxan, which displays a chair conformation, with the hydroxyl and the 2-nitrophenyl groups in the equatorial positions. The atoms C1 and C3 of the [1,3]dioxan ring lie 0.635 (2) and 0.682 (3)Å, respectively, from the mean plane of O2/O3/C4/C2. The dihedral angel between the mean plane O2/O3/C4/C2 and the benzene ring is 32.12(14 °. The molecules are linked into chains along the b-axis involving intermolecular hydrogen bond of the type O—H···O (Table 1) thus stabilizing the crystal structure (Fig. 2).

Experimental

The title compound was synthesized by treating glycerol (2.76 g, 30 mmol) with 2-nitrobenzaldehyde (3.02 g, 20 mmol) in the presence of p-toluenesulfonic (0.06 g) as a catalyst in cyclohexane (40 ml). This reaction mixture was placed in a two-necked round-bottomed flask fitted with a magnetic stirrer and Dean-Stark assembly. The mixture was refluxed with stirring and water present in the reaction was removed as an azeotropeover for 6 h. Once the reaction was complete, the mixture was washed with water, and the solvent was distilled under vacuum. The resulting reaction mixture was purified directly by silica gel column chromatography (eluent:petroleum ether/EtOAc; 7:4). Single crystals were obtained by slow evaporation of acetone/hexane mixture (1:1) of the title compound.

Refinement

H atoms were placed in calculated position with C—H = 0.98, 0.97 and 0.93 Å for methine, methylene and aryl H-atoms, respectively, and O—H = 0.82 Å. All H atoms were refined in riding mode, with Uiso(H) = 1.2Ueq of the carrier atoms.

Figures

Fig. 1.
The asymmetric unit of the structure of the title compound, with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Unit cell packing of the title compound showing H-bonded chains of molecules lying along the b-axis.

Crystal data

C10H11NO5F(000) = 472
Mr = 225.20Dx = 1.439 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6214 reflections
a = 8.0166 (4) Åθ = 3.2–27.4°
b = 10.6499 (5) ŵ = 0.12 mm1
c = 12.4109 (6) ÅT = 296 K
β = 101.221 (1)°Chunk, colorless
V = 1039.34 (9) Å30.35 × 0.19 × 0.12 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer2346 independent reflections
Radiation source: rolling anode1466 reflections with I > 2σ(I)
graphiteRint = 0.025
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.2°
ω scansh = −9→10
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −13→13
Tmin = 0.960, Tmax = 0.986l = −16→15
9906 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.110w = 1/[σ2(Fo2) + (0.0372P)2 + 0.330P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2346 reflectionsΔρmax = 0.18 e Å3
147 parametersΔρmin = −0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0152 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O30.65238 (15)0.68340 (10)0.28615 (9)0.0558 (3)
C50.78112 (19)0.53115 (14)0.41276 (12)0.0456 (4)
O20.70918 (18)0.73226 (11)0.47090 (10)0.0693 (4)
N10.89732 (19)0.48237 (15)0.24515 (13)0.0616 (4)
C90.8397 (2)0.31608 (16)0.36545 (16)0.0632 (5)
H90.87620.26000.31740.076*
C30.7680 (2)0.66933 (14)0.38712 (13)0.0485 (4)
H30.87970.70220.38040.058*
C100.83678 (19)0.44328 (15)0.34425 (13)0.0488 (4)
C60.7294 (2)0.48360 (17)0.50467 (14)0.0588 (5)
H60.69030.53860.55240.071*
C80.7884 (3)0.27296 (19)0.45772 (18)0.0716 (6)
H80.79050.18740.47300.086*
O40.9752 (2)0.57938 (16)0.24619 (14)0.0940 (5)
O10.6154 (2)1.02233 (13)0.3183 (2)0.1241 (8)
H1010.52921.04970.27870.149*
C20.7052 (3)0.86500 (18)0.45027 (19)0.0837 (7)
H2A0.81950.89490.45020.100*
H2B0.66280.90840.50820.100*
C10.5922 (3)0.89338 (17)0.3408 (2)0.0783 (7)
H10.47300.87750.34460.094*
C40.6432 (3)0.81319 (17)0.25365 (17)0.0706 (6)
H4A0.56100.82280.18560.085*
H4B0.75310.84030.24080.085*
C70.7342 (3)0.3565 (2)0.52745 (16)0.0700 (5)
H70.70040.32740.59050.084*
O50.8708 (2)0.41251 (17)0.16609 (13)0.1034 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O30.0629 (7)0.0404 (6)0.0568 (7)−0.0064 (5)−0.0067 (5)0.0055 (5)
C50.0449 (8)0.0405 (9)0.0484 (8)0.0015 (6)0.0018 (7)−0.0013 (7)
O20.0931 (9)0.0483 (7)0.0641 (8)0.0167 (6)0.0093 (7)−0.0112 (6)
N10.0601 (9)0.0607 (10)0.0658 (10)0.0037 (7)0.0165 (7)−0.0066 (8)
C90.0663 (11)0.0415 (10)0.0760 (12)0.0095 (8)−0.0007 (9)−0.0071 (9)
C30.0503 (9)0.0401 (9)0.0515 (9)0.0013 (7)0.0008 (7)−0.0043 (7)
C100.0465 (8)0.0448 (9)0.0529 (9)0.0027 (7)0.0044 (7)−0.0020 (7)
C60.0661 (11)0.0551 (11)0.0547 (10)0.0040 (8)0.0102 (8)0.0037 (8)
C80.0802 (13)0.0446 (11)0.0809 (13)−0.0019 (9)−0.0068 (11)0.0126 (10)
O40.1066 (12)0.0895 (12)0.0969 (11)−0.0285 (10)0.0472 (9)−0.0076 (9)
O10.0894 (11)0.0398 (9)0.214 (2)0.0013 (7)−0.0431 (13)0.0144 (10)
C20.0989 (16)0.0438 (11)0.0996 (16)0.0156 (10)−0.0026 (13)−0.0185 (10)
C10.0624 (11)0.0373 (10)0.1237 (18)0.0046 (8)−0.0106 (12)0.0036 (11)
C40.0676 (12)0.0457 (10)0.0879 (14)−0.0100 (8)−0.0114 (10)0.0209 (10)
C70.0750 (13)0.0679 (13)0.0638 (11)−0.0063 (10)0.0057 (10)0.0205 (10)
O50.1424 (15)0.1019 (13)0.0717 (9)−0.0136 (11)0.0352 (10)−0.0322 (9)

Geometric parameters (Å, °)

O3—C31.4142 (18)C6—C71.382 (3)
O3—C41.438 (2)C6—H60.9300
C5—C61.383 (2)C8—C71.369 (3)
C5—C101.395 (2)C8—H80.9300
C5—C31.505 (2)O1—C11.421 (2)
O2—C31.394 (2)O1—H1010.8200
O2—C21.436 (2)C2—C11.510 (3)
N1—O41.206 (2)C2—H2A0.9700
N1—O51.2167 (19)C2—H2B0.9700
N1—C101.468 (2)C1—C41.496 (3)
C9—C81.369 (3)C1—H10.9800
C9—C101.379 (2)C4—H4A0.9700
C9—H90.9300C4—H4B0.9700
C3—H30.9800C7—H70.9300
C3—O3—C4109.84 (12)C9—C8—H8120.2
C6—C5—C10116.10 (15)C7—C8—H8120.2
C6—C5—C3120.83 (15)C1—O1—H101109.5
C10—C5—C3123.00 (15)O2—C2—C1110.25 (16)
C3—O2—C2109.83 (15)O2—C2—H2A109.6
O4—N1—O5122.79 (18)C1—C2—H2A109.6
O4—N1—C10119.27 (15)O2—C2—H2B109.6
O5—N1—C10117.90 (16)C1—C2—H2B109.6
C8—C9—C10119.50 (18)H2A—C2—H2B108.1
C8—C9—H9120.3O1—C1—C4110.2 (2)
C10—C9—H9120.3O1—C1—C2106.94 (17)
O2—C3—O3110.58 (13)C4—C1—C2109.60 (16)
O2—C3—C5109.41 (14)O1—C1—H1110.0
O3—C3—C5107.32 (12)C4—C1—H1110.0
O2—C3—H3109.8C2—C1—H1110.0
O3—C3—H3109.8O3—C4—C1110.63 (17)
C5—C3—H3109.8O3—C4—H4A109.5
C9—C10—C5122.56 (16)C1—C4—H4A109.5
C9—C10—N1116.26 (16)O3—C4—H4B109.5
C5—C10—N1121.19 (15)C1—C4—H4B109.5
C7—C6—C5121.76 (18)H4A—C4—H4B108.1
C7—C6—H6119.1C8—C7—C6120.43 (19)
C5—C6—H6119.1C8—C7—H7119.8
C9—C8—C7119.65 (18)C6—C7—H7119.8
C2—O2—C3—O3−65.20 (18)O5—N1—C10—C933.6 (2)
C2—O2—C3—C5176.81 (14)O4—N1—C10—C535.4 (2)
C4—O3—C3—O264.54 (18)O5—N1—C10—C5−146.86 (17)
C4—O3—C3—C5−176.20 (14)C10—C5—C6—C70.5 (2)
C6—C5—C3—O23.4 (2)C3—C5—C6—C7177.47 (16)
C10—C5—C3—O2−179.88 (14)C10—C9—C8—C70.3 (3)
C6—C5—C3—O3−116.59 (16)C3—O2—C2—C158.5 (2)
C10—C5—C3—O360.11 (19)O2—C2—C1—O1−171.0 (2)
C8—C9—C10—C5−0.9 (3)O2—C2—C1—C4−51.6 (2)
C8—C9—C10—N1178.63 (16)C3—O3—C4—C1−57.32 (19)
C6—C5—C10—C90.4 (2)O1—C1—C4—O3168.64 (14)
C3—C5—C10—C9−176.42 (15)C2—C1—C4—O351.2 (2)
C6—C5—C10—N1−179.05 (14)C9—C8—C7—C60.6 (3)
C3—C5—C10—N14.1 (2)C5—C6—C7—C8−1.1 (3)
O4—N1—C10—C9−144.09 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H101···O3i0.822.082.8548 (18)157

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2219).

References

  • Deutsch, J., Nartin, A. & Lieske, H. (2007). J. Catal.245, 428–435.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hill, H. S., Whelen, M. S. & Hibbert, H. (1928). J. Am. Chem. Soc.50, 2235–2242.
  • Li, R., Ding, Z.-Y., Wei, Y.-Q. & Ding, J. (2009). Acta Cryst. E65, o1296. [PMC free article] [PubMed]
  • Rigaku (2006). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2007). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, K., Hawley, M. C. & Deathos, S. J. (2003). Ind. Eng. Chem. Res.42, 2913–2923.
  • Wang, J. L., Yu, J. E. & Ji, J. B. (2009). Chinese Patent CN101412706A.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography